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The idea that people learn detailed probabilistic generative
models of the environments they interact with is intuitively
appealing, and has received support from recent studies of
implicit knowledge acquired in daily life. The goal of this
study was to see whether people efficiently induce a probability
distribution based upon incidental exposure to an unknown
generative process. Subjects played a ‘whack-a-mole’ game in
which they attempted to click on objects appearing briefly, one
at a time on the screen. Horizontal positions of the objects
were generated from a bimodal distribution. After 180 plays
of the game, subjects were unexpectedly asked to generate
another 180 target positions of their own from the same
distribution. Their responses did not even show a bimodal
distribution, much less an accurate one (Experiment 1). The
same was true for a pre-announced test (Experiment 2). On
the other hand, a more extreme bimodality with zero density
in a middle region did produce some distributional learning
(Experiment 3), perhaps reflecting conscious hypothesis testing.
We discuss the challenge this poses to the idea of efficient
accurate distributional learning.

1. Introduction
People often seem to behave effectively based on noisy
observations of uncertain environments. This might seem
surprising because people generally have poor incidental memory
(e.g. the direction that Lincoln faces on the penny; [1]). On the
other hand, probability distributions may be special, and there is
evidence that people are quite good at estimating frequencies of
events even when they have paid little attention to the stimuli
as they appeared [2]. One currently popular interpretation of
this adaptive flexibility assumes that people efficiently learn
probabilistic generative models of their environment and then use
these models to guide their behaviour. Such a capability would
seem to have the potential to assist people in achieving many
of their goals, including goals with strong benefits to Darwinian
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fitness (such as finding food and finding mates). If one looks at the literature, however, while there
are many examples of evidence taken to favour the idea of flexible induction of generative models,
the evidence appears somewhat restricted and indirect. For example, Vulkan [3] showed that people
were able to match reward probabilities of several alternatives with their choices, indicating that
they can learn probability distributions over those alternatives. People can also learn the probabilistic
dependency structure in networks of binary variables (e.g. [4,5]). As impressive as these feats are, these
outcomes could potentially be achieved by learning only the first few moments (mean and variance) of a
distribution rather than the full underlying structure. In this paper, we ask more straightforwardly: can
people learn the overall shape of an observed distribution and are they able generate new instances that
retain the properties of the learned distribution?

2. Prior methodological procedures used in distributional learning studies
To date, studies that have shown evidence for (e.g. [6,7]) and against (e.g. [8]) distributional learning have
used tasks that: (i) employ other types of strategies or (ii) seem to allow for an aggregate analysis of only
a few moments of the distribution rather than the whole. Our main focus is on how the methodological
procedures from various studies might limit the ability to tease apart what properties are learned from a
distribution.

Griffiths & Tenenbaum [6] suggested that people have acquired a great deal of information about
the shape of the distribution of quantities such as baking time for cakes, reigns of Pharaohs and booking
time for telephone ticket booking agencies. Their argument for this conclusion was based on participants’
ability to answer questions of the form ‘If you were calling a telephone box office to book tickets and had
been on hold for 3 min, what would you predict for the total time you would be on hold?’ They found
that people’s responses generated from their internal generative models were very similar to the true
statistical distributions. However, Mozer et al. [9] questioned the conclusions of Griffiths & Tenenbaum
[6], arguing that the excellent performance at the aggregate level might be consistent with very limited
learning at the individual level (cf. [10,11]).

A broader concern with studies like Griffiths & Tenenbaum [6] is that we do not know how much
exposure, and what type of exposure, people have had to events like Pharaohs and ticket-service call
lines. Many of the quantities considered by Griffiths & Tenenbaum are subject to soft constraints from
general world knowledge: knowing current average lifespans have increased over time, knowing that
some pharaohs came into power at a very young age all impose constraints on the distribution of Pharaoh
reigns. Thus, distributional knowledge about such world facts need not imply that people efficiently
learn such distributions from direct observation; instead it may imply that people effectively infer this
distribution as needed.

Sailor & Antoine [8] used a more controlled set of stimuli with a task requiring participants to estimate
the size of squares drawn from two distributions (Experiments 1, 3 and 4: overlapping; Experiments 2
and 5: non-overlapping). On a given trial, participants were initially presented with a square drawn
from one of the distributions and were coloured red or blue to distinguish which distribution the square
was drawn from; however, this was never explicitly stated to the participants. Participants then had
to estimate the size of the initially presented square by adjusting the size of a subsequently displayed
square. Only on the last two trials of the experiment were participants asked to estimate the mean size
of the red and blue squares. Sailor & Antoine found that the estimated means for both the red and blue
squares did not differ from the average of the two distributional means. In other words, participants were
unable to distinguish the two different distributions; instead, they grouped the red and blue squares
into a single-unimodal distribution. We argue that the methodology presented by Sailor & Antoine
may not well assess an individual’s ability to learn the shape of a distribution, because it requires only
sensitivity to averages. In a similar task, Gershman & Niv [12] had participants estimate the number
of circles presented on the screen. The circles were either all red or all blue and were drawn from two
different underlying distributions of quantity. In line with the findings from Sailor & Antoine, Gershman
& Niv also discovered that participants’ estimations were biased towards the mean of both distributions.
Participants’ biases, however, were reduced when the red and blue quantity distributions were further
apart (i.e. more easily distinguishable; see Experiment 3 of this article for comparable results).

In a further investigation of these findings, Xu & Griffiths [7] were able to show that participants can
learn properties of a bimodal distribution using a serial reproduction task. Xu & Griffiths employed a
similar procedure to Sailor & Antoine [8] where participants learned to distinguish two types of fish
drawn from two separate size distributions. On a given trial, a to-be-estimated fish was presented on
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the screen and disappeared. Participants then adjusted the size of a subsequent fish to estimate the just-
seen fish. A major novelty in Xu & Griffiths’ procedure was that each estimation made by a participant
was used as subsequent to-be-estimated fish. In other words, participants estimated fish sizes from their
own previous estimates (i.e. a Markov chain) rather than estimating fish sizes from fish independently
drawn from the experimental distribution on each trial. Using this procedure, Xu & Griffiths claimed
to have demonstrated learning of a bimodal distribution. However, the argument rests on people’s
reconstructions of their own estimates where iterated learning can occur from trial to trial. Hence, with
this paradigm, one cannot straightforwardly ask whether or not people can generate new instances that
conform to a learned distribution because each trial is influenced by the previous trial.

3. Present study
The current study was designed to provide a test as simple and direct as possible for the idea that people
implicitly learn the shape of a distribution based on observed samples of that distribution. The study
represented something of a (friendly) ‘adversarial collaboration’ (cf. [13]), in that one of us (EV) was
generally favourably disposed to the idea of implicit learning of generative models, while another of us
(HP) was fairly sceptical of this idea, and RT at least professed neutrality.

To maximize the chances of demonstrating effective distributional learning, several features were
built into the design. First, the variable whose distribution was tested was a variable that was highly
relevant to actions the subjects would be performing. To arrange this, we used a ‘whack-a-mole’-type
game in which the subject sought to click on an object during the brief period before it disappeared. This
required paying close attention to its location as the object’s sole action-relevant property. Second, we
exposed subjects to a distinctive and somewhat unusual (bimodal) distribution to make it possible to test
the fidelity of the distribution they learned. The test of learning used here required subjects to produce
their own sequence of locations, mimicking the locations observed during the learning phase. While
the virtues of this form of test can be debated (see General discussion), the goal here was to maximize
the chance of finding distributional learning (see [14], for arguments that the mental representation of
distributions is embodied in the ability to generate new samples from these distributions).

4. Experiment 1
In Experiment 1, learning was incidental: subjects played the game in Phase 1 with no expectation of
being tested.

4.1. Method
4.1.1. Participants
Thirty undergraduates at the University of California, San Diego participated in this experiment for
course credit. All were naive to the purpose of the experiment.

4.1.2. Distribution used in phase 1
A single fixed sequence of locations was used for all subjects in Phase 1 (the entire sequence is provided
in the electronic supplementary material). The purpose of this was to avoid any confusion of the results
due to sampling variability of the observations. The distribution of values used included only multiples
of 0.01, with one observed value at each position within the unit interval (0, 1), plus additional values
‘piled up’ over two modes, one ranging from 0.10 to 0.26 (with four total observations at each point in
that range) and the other from 0.80 to 0.84 (with seven total observations at each point in that range).
Figure 1 shows this distribution.

4.1.3. Procedure in phase 1
In Phase 1, subjects were told ‘Welcome to the experiment. In the first phase of the study you will
play a game similar to the old computer game Wackamole. On every play, a disk will appear and begin
expanding. Your job is simply to click on it before it disappears. If you click on it before it disappears,
you score. That’s it!’ They played the game 180 times. Average viewing distance from the screen was
about 76 cm on a 1024 × 768-resolution screen. On each trial, a blue disc (initially just 1 pixel) appeared
in a horizontal range of positions 822 pixels in width centred on the screen. Beginning at the moment
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Figure 1. Experiment 1 results: histogram of the training (blue) and reported (red) locations.

of its appearance, each disc grew at 100 pixels s−1 until it reached a size of 100 pixels, at which time it
disappeared. If the subject was able to click on the item during its 1 s expansion phase, they received 1
point. Nothing else appeared on the horizontal line. (If the subject hit the disc, a confirming sound would
play with the word ‘Hit’ displayed on the screen. Otherwise a buzz sound played while the word ‘Miss’
was displayed. The feedback lasted 1.8 s. A streak counter and best streak counter were also visible on
the top left of the screen, displaying the subject’s current hit streak and their best hit streak overall.)

4.1.4. Procedure in phase 2
Immediately after the last play, subjects began the second phase of the study, and were told, ‘Now we
are interested in determining how much of an intuitive sense you have gained for how the locations of
the disks were being determined. Please show us this by generating a new sequence of locations. Please
do NOT click in the same spot over and over.’ They were also told ‘If you think there were any other
patterns in the original sequence, please try to generate a sequence that reflects those patterns, too. Don’t
worry about mimicking the timing of the original sequence. Just try to produce a sequence of locations
which is as much like the original sequence as you can make it.’

In the second phase, subjects’ clicks were self-paced. When they clicked, a disc showed up with the
location of the cursor as the centre of the disc, a click counter on the top left of the screen incremented
with each click. After 180 clicks were registered, an exit screen was displayed, terminating the study.

4.2. Results and discussion
The average hit rate of clicks in Phase 1 was M = 0.51, s.d. = 0.14, s.e. = 0.02. Scores ranged from 0.25 to
0.74 with a median of 0.50. As with the real Whack-a-mole game, we expected to find a wide range of
hit rates during Phase 1. Figure 1 shows the distribution of generated click positions aggregated across
subjects for Phase 2. The subjects’ responses show no obvious similarity to the bimodal pattern presented
in Phase 1.

5. Experiment 2
In Experiment 2, the task was the same, but the subjects were warned that they would be tested on the
distributions of locations.
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Figure 2. Experiment 2 results: histogram of the training (blue) and reported (red) locations.

5.1. Method
5.1.1. Participants
Thirty-one undergraduates drawn from the same population as Experiment 1 participated. All were
naive to the purpose of the experiment.

5.1.2. Materials and design
Materials and design were identical to Experiment 1 with the exception of a difference in instructions.

5.1.3. Procedure
The procedure was identical to that of Experiment 1 except that prior to performing the first phase
(playing Whack-a-mole), the subjects were told: ‘Just one more thing: please pay attention to the sequence
of locations where the disk appears. After you’re done playing, we’ll ask you to try to generate a sequence
of locations that simulates the sequence the computer is generating. So please see if you can learn the
characteristics of the sequence of locations where the disks pop up.’

5.2. Results and discussion
One subject was excluded from the subsequent analyses due to a logging error in the subject’s file. The
average hit rate of clicks in Phase 1 was M = 0.57, s.d. = 0.18, s.e. = 0.03. Scores ranged from 0.17 to 0.89
with a median of 0.60. Figure 2 shows the subjects’ response distribution for Phase 2. Again, there was
no sign in the aggregate responses that subjects learned the bimodality of the distribution, despite an
explicit instruction to try to learn the characteristics of the sequence.

6. Experiment 3
In Experiment 3, the procedure followed Experiment 1, except the distribution used was more extremely
bimodal, with zero density outside of the intervals of the modes ([0.10, 0.26] and [0.8, 0.84]; figure 3).
Thirty-one undergraduates from the same subject pool participated (one subject was excluded due to a
file logging error). The complete stimulus sequence is provided in the electronic supplementary material.
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Figure 3. Experiment 3 results: histogram of the training (blue) and reported (red) locations.

6.1. Results and discussion
The average hit rate of clicks in Phase 1 was M = 0.58, s.d. = 0.16, s.e. = 0.03. Scores ranged from 0.24 to
0.83 with a median of 0.63. Figure 3 shows that here in Phase 2, subjects did indeed pick up on the now
discrete bimodality much better than in the previous studies.

7. Quantifying learning
While one of us (HP) felt that the results clearly showed that distributional shape learning was negligible
except when the distribution had a gross qualitative feature (zero density in the middle region), EV felt
it would still be useful to explore the extent of learning quantitatively.

To characterize learning in these experiments, we therefore ascertained which precision of a kernel
density estimate applied to the training observations (xi being the position seen on a given training trial)
best captured the responses produced by our observers. As the range of possible responses is bounded,
we created a ‘Beta kernel’ parametrized by one precision parameter, k:

f̂ k(x) = 1
n

n∑

i=1

Kk(x|xi)

and
Kk(x|xi) = Beta(x|1 + xi × 10k, 1 + (1 − xi) × 10k)

This fitting was done by obtaining the distribution over positions as the kernel density estimate
(sum over all kernels for all training data, normalized), for a given k. Then the likelihood of a subject’s
responses under that distribution was calculated for each k. Finally, the maximum-likelihood k was taken
as the estimate. When k is large (greater than 0), the kernel amounts to a beta distribution peaked at the
observed value, with the distribution approaching a single spike at the observed value as k increases.
When k is small (less than 0), the kernel loses just about all of the information about the observed value,
and yields a uniform (0, 1) distribution (figure 4). We fit the kernel precisions parameter to individual
subjects in each of our experiments, as well as the aggregate across-subject data shown in figures 1–3.

Figure 5 shows how well different values of k fit individual subjects in each of our experiments. Only
Experiment 3 shows that subjects learned something from the training distribution—as indicated by an
advantage of kernel precisions greater than 0 (23 of 30 subjects have a best-fitting kML > 0). By contrast,
for Experiments 1 and 2, the best-fitting kernel precision is very negative for most subjects (kML > 0 for
10/30 and 9/30, respectively), indicating that most subjects’ responses reflect effectively zero influence of
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Figure 4. (a) Beta kernel for an observed value of 0.9 for different precision parameters. Kernel precision parameters less than 0 yield
an effectively uniform distribution. (b) Results of Experiment 3: trained distribution (blue), subjects’ response distribution (red), and the
best-fitting (k= 1.09) Beta kernel density estimate of the trained distribution (green; note yellow arises where red and green overlap).
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Figure 5. Quality of fit (y-axis; lower is better) of different kernel precision values (x-axis) for Experiments 1, 2 and 3 (from (a) to (c)).
Individual subject fits are shown in red, while the fit to the aggregate data is shown in black. Grey bars at the bottom of each panel are a
histogram (across subjects) of the best-fitting k-values (black circle indicates the best-fitting value for the aggregate over all subjects).
Although aminority of subjects reveal some learning (positive kernel precision) in Experiments 1 and 2, for themost part, kernel precisions
are very negative, indicating that subjects do not reliably capture any of the training distribution signal in their responses. By contrast,
Experiment 3 shows reliable learning.
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Figure 6. Histogram of subject MAP estimates for Experiments 1–3.

the training distribution. To examine these results across experiments, we estimated maximum a posteriori
values of k (with loosely informative priors of k ∼ N(0, 5) to avoid indistinguishable regions for very
negative values of k) for each subject. A one-way ANOVA on subject MAP estimates (figure 6) showed
statistical significance across the three experiments, F2,89 = 8.54, p < 0.001.

8. General discussion
The results reported here show that when people are exposed to a stream of stimuli whose properties
on an action-relevant dimension (here, location) conform to a bimodal distribution, they fail to
spontaneously learn the bimodality. The same is true even when they are told to try to learn the
distribution of locations (Experiment 2). However, when the continuous bimodal distribution was
discretized by adding a zero-density gap between the two modes, people showed clear distributional
knowledge (Experiment 3). We are inclined to reject the possibility that subjects learned the distribution
in Experiments 1 and 2, but failed to produce under the ‘generate samples’ testing procedure because the
same procedure yielded clear positive findings in Experiment 3.

The results are amenable to a number of possible interpretations, some of which we will mention here
without taking any strong view (reflecting the current authors’ friendly adversarial collaboration noted
in the Introduction). One intriguing interpretation is that there is no general non-parametric learning
of continuous probability distributions, and the results of Experiment 3 arose because the distribution
could be readily discretized on account of the zero-density interval between the two modes. This would
be consistent with the idea that discreteness affects the ease in which distributions can be abstracted.

Another possibility is that people have a strong tendency to learn by ‘parameter tuning’ of
particular functional forms of distributions, rather than learning distributions non-parametrically—
an account echoed in results suggesting that perceptual learning amounts to parameter tuning of
feature relationships, rather than learning new relationships among features [15]. A more mundane
but still interesting possibility is that non-parametric learning of a distribution proceeds with imperfect
and incomplete memory, which renders the distributions in Experiments 1 and 2 too subtle to be
learned. Although learning does occur when the subtle bimodal distribution was made more notable
in Experiment 3. These findings contrast the conclusions from Acerbi et al. [16] where the discernibility
of complex distributions does not modulate performance. However, their subjects were given explicit
distribution information to be used in their spatial estimation task. This discrepancy may reflect different
processes when using explicit information versus generating novel samples from distributions. Yet
another possibility, attributed to a referee suggestion on an earlier version of this manuscript, might be
subjects represent the distribution faithfully as changes in distance from trial-by-trial (i.e. allocentrically)
rather than over the spatial width of the line. Finally, a related possibility is that people have prior
assumptions strongly favouring unimodal distributions, and the data provided in Experiments 1 and
2 (perhaps corrupted by memory) are insufficient to overcome such priors.
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Further support for this possibility comes from a recent study by Sanborn & Beierholm [17]. These

investigators had subjects estimate the number of circles in a display (the number ranged from a
minimum of 23 to at most 35). Quantities were drawn from discretized bimodal or quadrimodal
distributions and feedback was provided. While Sanborn & Beierholm’s bimodal distribution did not
have zero density in the middle, by contrast with our Experiment 3, the two modes were always at the
most extreme left and right positions within the distribution (e.g. trials with 23 and 29 circles appeared
with a probability of 0.3 and trials with 24–28 circles appeared with a probability of 0.08 with a total
of 700 trials). The quadrimodal distribution combined two bimodal distributions with a zero density
region interposed between them (e.g. trials with 23, 25, 29 or 31 circles appeared with a probability of
0.2; trials with 24 or 30 circles appeared with a probability of 0.1; all other possible quantities of circles
had a probability of 0). Subjects’ behavioural responses (shown as conditional response distributions)
suggested they had learned a good deal about the distributions. Given their discrete character, these
findings seem consistent with the findings of Experiment 3.

9. Suggestions for future research
So what do these three studies tell us? It seems that learning fine-grained structure of observed
probability distribution may not be as efficient as prior literature might seem to imply. The clear
discrepancy between Experiments 1 and 2, and Experiment 3 suggests an intriguing possibility: only
when a continuous distribution may be easily discretized do people engage in some form of non-
parametric learning; otherwise, they tend to learn only a few moments of the distribution (such as the
commonly investigated tendency to learn the mean and variance).

Of course, before such a hypothesis might be acknowledged, it would be important to untangle more
mundane accounts: perhaps strong priors about unimodality, coupled with an imperfect memory for
exemplars, is responsible for this pattern of results.
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