
Modeling sampling duration in decisions from experience
Nisheeth Srivastava, Johannes Müller-Trede

UC San Diego, 9500 Gilman Drive
La Jolla, CA 92093 USA

Paul Schrater
University of Minnesota

Minneapolis, MN 55455 USA

Edward Vul
UC San Diego, 9500 Gilman Drive

La Jolla, CA 92093 USA

Abstract

Cognitive models of choice almost universally implicate se-
quential evidence accumulation as a fundamental element of
the mechanism by which preferences are formed. When to
stop evidence accumulation is an important question that such
models do not currently try to answer. We present the first cog-
nitive model that accurately predicts stopping decisions in in-
dividual economic decisions-from-experience trials, using an
online learning model. Analysis of stopping decisions across
three different datasets reveals three useful predictors of sam-
pling duration - relative evidence strength, how long it takes
participants to see all rewards, and a novel indicator of con-
vergence of an underlying learning process, which we call pre-
dictive volatility. We quantify the relative strengths of these
factors in predicting observers’ stopping points, finding that
predictive volatility consistently dominates relative evidence
strength in stopping decisions.

Keywords: response time; decision-making; evidence accu-
mulation; sequential sampling; decisions from experience

Introduction
In moving decision theory from analyzing static economic
descriptions towards the more dynamic decisions humans
face in everyday life, the decisions-from-experience (DFE)
paradigm presents an important step forward (Hertwig, Bar-
ron, Weber, & Erev, 2004). The DFE paradigm is a modifi-
cation of certainty equivalence experiments in experimental
economics. Certainty equivalence (CE) is a commonly used
procedure for eliciting subjects’ utility functions for money
amounts (Hershey & Schoemaker, 1985). In a typical cer-
tainty equivalence task, participants are asked to choose be-
tween a risky option that pays H with a probability p and L
with probability 1− p and a safe option that always pays M,
where H > M > L. In standard CE experiments, participants
are explicitly shown and are asked to choose between the two
options given for each such tuple.

Decisions from experience modify this protocol: Partic-
ipants are not shown the lottery payoffs and odds, and have
to learn them via experience. Several interesting observations
emerge from research on DFE. Subjects sample more variable
options and options with higher stakes for longer, for exam-
ple (Lejarraga, Hertwig, & Gonzalez, 2012). They also ap-
pear to underestimate the probability of rare events (Hertwig
et al., 2004), though much less so with increasing experi-
ence (Zhang & Maloney, 2012).

In the particular variety of DFE we consider throughout
this paper, typically known as the sampling paradigm, partic-
ipants are permitted to sample each of two options without
consequence as long as they like, before finally committing
to a binding choice. This protocol is particularly interesting
since it closely mirrors the flow of information in everyday
human decisions - learn from the environment ad libitum,

then make a choice. Importantly, such choices are actually
composed of two decisions: a latent decision to terminate
learning, and an overt decision to choose the risky or the safe
option, based on the information acquired.

Efforts to model the overt decision about which option to
choose have been relatively successful (Erev et al., 2010).
Little attention has been paid, however, to modeling the ear-
lier latent decision about how long to sample information
(or when to stop learning). Research on DFE has used sim-
ple statistical approaches as place-holders, assuming an un-
derlying probability distribution over sampling lengths and
fitting this distribution to the empirical distribution of sam-
pling lengths observed in the data (Gonzalez & Dutt, 2011).
Markant et al. have recently proposed a model that jointly
predicts choices and sampling length distribution (Markant,
Pleskac, Diederich, Pachur, & Hertwig, 2015) However, since
this model uses known lottery stakes, it cannot be applied to
sampling-based DFE where the rewards and probabilities of
the lottery must be learned from experience.

In this paper, we investigated variables that, on theoretical
grounds, are expected to predict sampling lengths in DFE,
without assuming a priori knowledge of lottery stakes and
probabilities. Our analysis revealed that, across three differ-
ent datasets, the predictive value of economic variables in
DFE is exceeded by that of a novel psychological predic-
tor, predictive volatility, which tracks abrupt changes in the
magnitude of prediction error an observer experiences while
learning about a DFE decision. We further developed a com-
putational model of sequential sampling for DFE, incorporat-
ing these predictors, which makes accurate sampling length
predictions for individual DFE trials. The ability of our model
to predict sampling duration for individual DFE trials is cat-
egorically unprecedented, and is the principal contribution of
this paper.

DFE: Psychology and economics
An intuitive economically motivated predictor for sampling
duration in DFE is the difference between the imputed value
of both options. Presumably, if two competing options are
close in experienced value, observers could be expected to
sample them for longer to differentiate them more precisely.
Thus, if we measure the relative economic evidence con-
tained in observers’ sampling sequences, we’d expect to see
smaller amounts of relative evidence associated with longer
sequences. Such a conclusion would also mesh well with
pre-existing theories of response time, that ground the evi-
dence accumulation process formally in the sequential prob-
ability ratio test (Usher & McClelland, 2001; Busemeyer &
Townsend, 1993).



Formally, we track the expected value difference (EVD)
between the two gambles, measured at every sample for each
DFE trial,

EV D = pH +(1− p)L−M, (1)

where p = |H|
|H|+|L| , and |x| is the number of times the outcome

x has occurred in the sequence up to the time at which the
measurement is taken. This quantity is called the EVD pre-
dictor in our following analyses.

We argue that such economic predictors, while useful, are
not sufficient to model stopping criteria in DFE. Since infor-
mation search is a universal activity in animals, functional
parsimony suggests that observers use more general psycho-
logical variables to determine when to terminate information
search, with the economic variables specific to DFE comple-
menting them.

But which psychological variables? We suggest that the
information-theoretic goal of DFE observers is to efficiently
learn the reward rate of the lottery(ies) they are sampling. We
treat the decision to terminate information gathering as a ra-
tional response to the agent realizing that the learning pro-
cedure has saturated. In practice, observers, while trying to
learn useful models of their environment, have access to the
prediction errors in such models. The central theoretical nov-
elty of our current proposal is an intuition that unexpected
rises in prediction error magnitude (as illustrated in Fig.1)
signal the presence of unlearned environmental dynamics,
stimulating rational observers to sample more.
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Figure 1: An intuitive view of predictive volatility. When
the prediction error in a sequential learning process increases
abruptly, it is reasonable to infer that the process has yet to
converge. This indicator of the need to keep learning is what
we call predictive volatility.

Assuming a simple parametric observer model, we can ac-
quire insight into the learning process by tracking the evo-
lution of the learned parameter over individual sampling se-
quences. If the learning procedure is efficient, the prediction
error is expected to show an asymptotic gradual decrease,

reflecting increasingly precise estimation through acquiring
more data samples. Critically, we assume that human ob-
servers are intuitive statisticians in this particular sense - they
are implicitly aware that the trajectory of prediction error cor-
responding to efficient learning takes this particular shape.
However, in individual learning sequences, such declines are
not always monotonic. We call breaks in the expected predic-
tion error trend episodes of predictive volatility, and suggest
that, since observers, through experience, become implicitly
sensitive to the expected trajectory of prediction error, it is
rational for them to treat observed volatility episodes as ev-
idence that learning has not yet completed, and respond by
sampling for longer.

Formally, we model this process, in the context of DFE,
as a statistically efficient observer sequentially updating es-
timates of the mean parameter Λ of a Poisson distribution
tracking the frequency with which the high outcome of the
risky option occurs in the sampling sequence. Given every
new sample, the parameter estimate shifts by some quantity
∆Λ. The normative (and psychological) expectation is for
the magnitude of this quantity to decay over time |∆Λt | <
|∆Λt−1|. Deviations from this trend, therefore, suggest to an
observer that some aspects of the task still remain potentially
unlearned, and therefore justify continued sampling. These
episodes, we assert, constitute predictive volatility, which we
operationalize formally as

v(t) = 1 iff |∆Λt |> κ×|∆Λt−1|, (2)

and 0 otherwise, with the proportionality constant taking val-
ues κ > 1. In all our experiments, we used a value of κ = 2;
substantially larger magnitudes than this would degrade the
information present in this signal, since such large fluctua-
tions are statistically infeasible in DFE reward rate estima-
tion, where the set of possible outcomes is very limited; sub-
stantially smaller values would add noise to the signal, in the
form of volatility false positives. Across an entire sampling
sequence, the cumulative effect of such episodes is measured
by the trial volatility load

V = ∑
t

v(t), (3)

and is referred to, in our following analysis, as the volatility
predictor

Finally, based on the task description of DFE, it is norma-
tively expected that observers will try to see each of the three
reward outcomes at least once before terminating sampling.
Depending on how skewed the risky option’s odds are, this
can take a relatively long time. Thus, the number of sam-
ples it takes to see all three reward outcomes at least once
contains valuable information about how long the sampling
sequence can be, and enters our predictive model in the form
of a counting predictor.

Results
We present two sets of results. We first demonstrate, us-
ing a proportional hazards regression analysis, that both the



magnitude of difference in expected value and the amount of
volatility seen in the sampling sequence influence sampling
durations, in theoretically expected directions. Model selec-
tion reveals that volatility plays a more influential role in this
process.

These results, however, are calculated using post hoc pre-
dictors that an actual observer would not have access to in
real-time. Our second set of results uses sequential counter-
parts to these predictors to develop a sequential model that
simulates the trajectory of the stopping probability of any
DFE trial, sensitive to the influence of both differences in ex-
pected value and episodes of volatility experienced in real-
time.

Data
We procured data from two sources: the decisions-by-
sampling condition from the Technion Prediction Tourna-
ment, which involved two sets (one for estimation and one
for competition) of 40 participants solving 30 such prob-
lems each, and a sample of 37 participants solving 19
different DFE problems we collected in the decisions-by-
sampling condition of a different experiment (Experiment 2
in (Lejarraga & Muller-Trede, 2016)). Throughout this pa-
per, we will refer to the Technion estimation dataset as TE,
the Technion competition dataset as TC, and our own sample
as LM.

Experimental protocols were largely1 identical across the
datasets. Participants could sample both options in each lot-
tery pair as often as they liked, and subsequently committed
to one final draw that would correspond to their actual pay-
out. All participants were compensated via a random incen-
tive scheme, and earned real money corresponding to their
payout in one randomly selected choice problem. We note,
however, that participants in LM revisited each choice prob-
lem in a group setting between individual trials (for details,
see (Lejarraga & Muller-Trede, 2016)), whereas participants
in TE and TC did not.

Volatility matters more
What can the expected value difference between options tell
us about the decision to stop sampling? Theory suggests
that large magnitudes, irrespective of sign, should be nega-
tively correlated with sampling lengths. That is, if the evi-
dence accumulated favors one of the gambles predominantly,
a rational observer would terminate sampling and select it.
Thus, if observers are using the weight of economic evi-
dence to decide when to terminate information search, greater
average magnitudes of the expected value difference, i.e.
1
T ∑

T
t |EV Dt | for sequences of duration T , should be corre-

spond with earlier sampling termination and vice versa.
We tested this hypothesis by running a Cox proportional

hazards regression, assessing the direction and magnitude of

1Participants in the LM experiment reported choices by alloting
fractions of an allocation budget to either option; TE and TC choice
selections were binary. We do not believe this difference is salient
for our purpose.

effect the average expected value difference measured during
a sampling sequence has on the hazard rate across all trials
per subject. As the top panels in Fig.2(A) show, EVD con-
sistently increases hazard rates across participants in all three
datasets, as expected.
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Figure 2: (A) Histograms of subject-wise Z-statistics ob-
tained by Cox regression of predictors against sampling se-
quence lengths. Negative Z-statistics indicate that the predic-
tor reduces the hazard rate, yielding longer sampling dura-
tions than baseline expectations. (B) Coefficients from Cox
multiple regressions using normalized EVD and volatility
predictors for all three datasets.

We ran a similar proportional hazard regression using
volatility load as a predictor of sampling sequence lengths.
As the bottom row in Fig.2(A) demonstrates, volatility load
consistently retards hazard rates in participants across all
three datasets tested. Panel B in Fig.2 compares the regres-
sion coefficients obtained when we use both predictors - EVD
and volatility - normalized and combining all participants in
each dataset. In all three cases, the normalized predictors are
uncorrelated (r < 0.05, p > 0.25), which makes the regres-
sion coefficients (β-weights) informative about the relative
importance of the two predictors (Nathans, Oswald, & Ni-
mon, 2012). Volatility consistently dominates EVD as a pre-
dictor across all three datasets.

A similar conclusion can be drawn by computing the
Bayesian Information Criterion (BIC) for regressions using
the two predictors indvidually, and then together. Not only
is the joint predictor preferable by BIC, corresponding ∆BIC
values show that the volatility-alone model is considerably
closer to the joint predictor than the EVD-alone model, sug-
gesting that it is more powerful predictor. Together, these
analyses demonstrate (i) that EVD and volatility are indepen-
dent sources of information for predicting sampling duration



Table 1: Model selection using BIC. Lower values are better
within individual datasets. ∆BIC from best model reported in
brackets.

TE TC LM
EVD 14312 (+165) 14643 (+177) 7090 (+63)
Volatility 14157(+10) 14529 (+63) 7031(+4)
Both 14147 14466 7027

and (ii) that volatility is a more informative predictor for sam-
pling durations than EVD.

DFE sampling durations are post hoc predictable
But how much predictive ability do these predictors actually
give us? As a simple indicator, a simple additive model com-
bining these two predictors,

duration = volatility+β |EVD|

yields correlations r = {0.56,0.53,0.45} with human sam-
pling lengths for the TE, TC and LM datasets2 respectively,
suggesting that these predictors can explain between 20-30%
of variance in sampling durations for human observers in
DFE. Since no previous models have reported results for DFE
sampling durations at the individual trial level, it is difficult
to assess this performance in a comparative sense.

But we can do better than this - by incorporating the count-
ing predictor. Recall that this predictor simply counts the
number of samples it took an observer to see each of the three
possible outcomes {H,M,L} at least once during a trial. In-
corporating it yields an augmented linear model

duration = count+α volatility+β |EVD|

which shows correlations of r = {0.56,0.69,0.71} with hu-
man data for the TE, TC and LM datasets respectively3.

One might question why adding this new predictor did not
improve the data-model correlation for the TE dataset in par-
ticular. This is because participants in this dataset strongly vi-
olated the normative expectation that participants would see
all three outcomes at least once. Of the 1200 total trials in this
dataset (40 participants × 30 problems), as many as 742 tri-
als (62%) were terminated without having seen all three out-
comes, including 192 (16%) that were terminated after draw-
ing just two samples altogether. For comparison, participants
in the TC and LM datasets terminated 41% and 14% of all
trials before seeing all three possible outcomes, respectively.
The higher sampling effort in the LM dataset may reflect ad-
ditional intrinsic motivation their participants derived from
the repeated social interactions between choice problems.

Given greater congruence with the assumption implicit in
the counting predictor - that observers will not terminate sam-
pling until they have seen all three outcomes at least once - its

2Best fit β = 0,−0.1,−0.4
3For best fit values of α = {3.8,5.9,2.6} and β =

{−0.2,−0.4,−0.9} respectively.

addition boosts the overall correlation of the model to ≈ 0.7
in the other two datasets, thereby showing that it is capable of
explaining around 50% of the variance in the data. In light of
the large variability in sampling lengths across both partici-
pants and problems, contingent on momentary fluctuations in
valuation, attention, and motivation, it is likely that our model
explains a much larger fraction of the total variance explica-
ble.

Note though, that the large improvement in correlation by
adding the counting predictor somewhat overstates its true ex-
planatory value. By definition, the sample count at which all
three options have been seen once cannot exceed the over-
all sampling sequence length. Thus, the counting predictor
is upper-bounded by the independent variable it is trying to
predict. The definitional absence of counting predictor val-
ues greater than the actual sampling length adds substantial
linearity to the correlation, leading to the elevated number we
see. Hence, while the counting predictor, prima facie adds
substantial predictive value to our model, it does so for rea-
sons that need not be theoretically insightful.

Real-time stopping point prediction
While we show that sampling lengths in DFE are substan-
tially predictable post hoc using objectively observable pre-
dictors, not all these predictors are available to decision-
makers at the time they’re making their decisions. Neither the
average EVD magnitude, nor the cumulative volatility load
across the entire sequence is available to an observer while
they are still in the process of sampling. In this section, we
use elements of our predictors that are available to such ob-
servers in real-time, and test how well they predict observers’
eventual stopping decisions.

To do so, we use computational models that perform the
same sampling task as the observer, stepping through each
trial sample by sample, predicting sequence lengths indirectly
by estimating stopping probabilities λt at each sample. To
make this analysis feasible, we make a simplifying assump-
tion - that there are no individual differences across individ-
uals within datasets. Doing so yields multiple data points
for each DFE problem, instead of just one per problem-by-
participant pair. From these, we construct a stopping point
distribution for each problem.

We then use these stopping point distributions to fit a basic
piece-wise constant hazard model that assumes the stopping
probability increases linearly with the sampling count t, i.e.,

λt+1−λt = δ, (4)

and fit {λ0,δ} for each unique problem such that the model’s
predicted sequence lengths,averaged across multiple runs
(N=1000) become statistically indistinguishable (two-sided
T-test p > 0.9) to the empirical stopping point distributions.
We use these same {λ0,δ} values in the subsequent models
we test below.

This simple model is theoretically and empirically similar
to previous sampling length models proposed in the litera-
ture, which assess model fit by testing whether it produces the
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Figure 3: While simple statistical models of sampling lengths
can reproduce population-level statistics (left), they (right)
fail to predict sampling sequence lengths for individual tri-
als. Results shown for LM dataset.

same statistical distribution of sampling lengths as the under-
lying data.

Fig.3 illustrates that our baseline model, too, closely ap-
proximates the empirical distribution of sampling lengths
(compare left panel with Figure 1 in (Markant et al., 2015)).
However, it is a poor predictor of sampling lengths at the in-
dividual trial level (r = 0.03, right panel), illustrating a basic
limitation of this modeling approach.

Table 2: Best fit correlations of sampling durations predicted
by sequential models with human data in all three datasets.

Models TE TC LM
Baseline -0.04 0.02 0.03
Baseline + Vol 0.20 0.11 0.19
Baseline + EVD 0.15 0.11 0.06
Baseline + EVD + Vol 0.26 0.18 0.21
Baseline + EVD + Vol + Counting 0.44 0.38 0.41

Next, we added a modification: incrementing the baseline
stopping probability by ∆ every time the observer encounters
volatility in the sampling sequence,

λt+1−λt = δ+ v(t)∆. (5)

Here, volatility refers to single episodes of volatility within
a sampling sequence, as defined in Eqn.2, not the cumulative
quantity we measure across the entire trial. If, as we suspect,
volatility retards the termination probability, we should ex-
pect negative values of ∆ to correspond to greater correlations
of the model’s sample sequences with human data. As Fig.4
illustrates, across all three datasets, observer models that re-
duce stopping probability when encountering volatility do fit
the data better. Hence, our hypothesis about the influence of
volatility is substantiated.

We ran a similar analysis to measure the sample-by-sample
impact of the EVD predictor. We assumed that incoming
signals of greater relative evidence strength would affect the
stopping probability following a logistic relationship, privi-

leging the impact of larger values. Thus,

log
λt

1−λt
= log

λ′t
1−λ′t

+ k log |dt +1|, (6)

where λ′t is obtained from Eqn 4, k is fitted to the data to maxi-
mize the model-data correlation, and dt is the EVD calculated
using the sequence up to the tth sample.

To combine the influence of volatility and EVD, we can
reuse Eqn 6, with λ′ calculated using Eqn 5 with {∆,k} as
free parameters. The best overall model fit yielded weakly
positive correlations across the three datasets4.

Finally, if we incorporate the counting predictor into our
model in the form of a real-time decision threshold - if all
options seen at sample t, terminate with probability λt , oth-
erwise, terminate with probability λ0 - the correlations im-
prove substantially, to {0.44,0.38,0.41}, for the same param-
eter values as in the previous model. These final correlation
values indicate the upper limit of our model’s ability to pre-
dict observers’ stopping points using only information they
themselves would have available in real-time.

Discussion
This paper develops theory and algorithms to predict
sampling durations in economic decisions-from-experience,
wherein observers get to sample options before committing
to a choice. We argue, and then empirically demonstrate,
that a combination of economic evidence strength, psycho-
logical predictive volatility, and simply tracking how long it
takes participants to observe the entire reward structure of the
particular DFE problem they are solving goes a considerable
way in explaining the individual sampling stopping points of
participants. Whereas earlier approaches can reproduce the
population’s sampling duration distribution, they are effec-
tively random at making trial-level predictions. Our account
replicates the distribution-level performance, while making
reasonably accurate trial level predictions. Finally, since it di-
rectly emits stopping point predictions, our model can easily
be combined with choice models that respect the epistemic
limitations of sampling-based DFE, e.g., primed sampling,
natural means, etc. (Erev et al., 2010) to make joint predic-
tions of choice and sampling duration.

While one of the predictors we use, time till all rewards are
observed, is specific to DFE, the other two are substantially
more general, and hence, could be used to predict sampling
duration in other experimental modalities. For example, Juni
et al. have demonstrated how observers sample for longer
when encountering noisier stimuli in a visuomotor estima-
tion task (Juni, Gureckis, & Maloney, 2011). In this modal-
ity, greater stimulus noise corresponds directly to evidence
strength, with lower values, due to greater noise, associated
with longer sampling, as in our case.

Our discovery of the significant influence of predictive
volatility on sampling duration warrants further investigation.

4Best fit parameter values for all three datasets, ∆ =
{−0.20,−0.15,−0.125},k = {0.02,0.02,0.02}
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Figure 4: Model-data correlations for observer models fitted using different increments to stopping probability when encoun-
tering volatility.

Predictive volatility is a very accessible information signal
that observers could be using in a variety of real-world deci-
sions from both experience and memory. To date, researchers
have modeled response durations as arising from either ev-
idence accumulation rising to a fixed threshold (Usher &
McClelland, 2001), or a time-sensitive threshold collapsing
to meet accumulating evidence (Thura, Beauregard-Racine,
Fradet, & Cisek, 2012). Our results show that thresholds need
not stay fixed or fall over time; they could rise adaptively
within trials also, sensitive to sequence-dependent predictive
volatility. The representational generality of this measure,
alongside our demonstration of its consistent and consider-
able impact on DFE stopping point decisions, invites further
exploration in other experiment designs.

The role of predictive volatility in determining when to ter-
minate sampling could also streamline the functional inter-
pretation of cortico-striatal dopaminergic activity in decision-
making (Schultz, Dayan, & Montague, 1997). Whereas
dopamine has been experimentally associated with encoding
both reward and prediction error, the latter association ap-
pears to be more robust, in the sense that it is congruent with a
larger literature on the role of prediction error in multiple mo-
tor, cognitive and perceptual functions (Friston et al., 2012).
Our account shows how dopaminergic activity could be tem-
porally correlated with the choice process, as a critical partic-
ipant in the decision to terminate information search, without
actually encoding reward.
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