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Fragile Associations Coexist With Robust Memories for Precise Details in
Long-Term Memory

Timothy F. Lew, Harold E. Pashler, and Edward Vul

University of California, San Diego

What happens to memories as we forget? They might gradually lose fidelity, lose their associations (and
thus be retrieved in response to the incorrect cues), or be completely lost. Typical long-term memory
studies assess memory as a binary outcome (correct/incorrect), and cannot distinguish these different
kinds of forgetting. Here we assess long-term memory for scalar information, thus allowing us to quantify
how different sources of error diminish as we learn, and accumulate as we forget. We trained subjects
on visual and verbal continuous quantities (the locations of objects and the distances between major
cities, respectively), tested subjects after extended delays, and estimated whether recall errors arose due
to imprecise estimates, misassociations, or complete forgetting. Although subjects quickly formed precise
memories and retained them for a long time, they were slow to learn correct associations and quick to
forget them. These results suggest that long-term recall is especially limited in its ability to form and

retain associations.

Keywords: visual memory, long-term memory, associative memory

What happens to memories as we forget? If, for instance, you
return from a trip and try to remember where you left your car
keys, there are different ways your memory of their location could
have deteriorated. You may misremember the location of the keys
by several feet (imprecise recall of the correct location). Perhaps
you will look for your car keys in the place where you left your
umbrella (associate objects with the incorrect locations). Or maybe
you will completely forget where you left your keys, and randomly
guess where they might be. How much do imprecise recall, mis-
associations, and altogether losing locations contribute to memory
errors?

Most investigations of long-term memory examine recollection
in an all-or-none manner: either a memory is recalled/recognized
or it is not. Consequently, these studies rely on indirect measures
and qualitative manipulations to estimate association fidelity and
memory precision. For instance, by comparing recall for individual
items with cued recall for paired associates, researchers have tried
to isolate failure to recall an item from failure to correctly associate
that item (Tulving & Wiseman, 1975). Similarly, others have
qualitatively estimated memory precision by comparing people’s
ability to distinguish categorically (e.g., two different mailboxes)
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and perceptually (e.g., a mailbox when it is open vs. closed)
similar images (Brady, Konkle, Alvarez, & Oliva, 2008). Super-
ficially, it would seem that the application of signal detection
theory to recognition memory provides a framework for estimating
the strength of memories via binary accuracy rates at different
confidence judgments (Green & Swets, 1966; Wickelgren & Nor-
man, 1966). However, this “memory strength” could be interpreted
either as memory precision or as association fidelity. Although
these studies have provided important insights into the content and
structure of memory, they can only indirectly assess how memo-
ries degrade over time by using confidence judgments as proxies
for precision or by comparing accuracy rates in qualitatively
different conditions.

In contrast, recent visual working memory studies have used
continuous report tasks in which subjects recall the exact features
of objects (e.g., color, orientation, size) to test how different types
of errors affect memory. Analyses of such continuous report data
via mixture models can then estimate the extent to which errors
arose due to imprecise responses about the correct feature value,
misassociations and random guesses (Bays & Husain, 2008; Zhang
& Luck, 2008; Anderson, Vogel, & Awh, 2011; Bays, Wu, &
Husain, 2011; see Ma, Husain & Bays, 2014, for a review).

Despite the recent explosion of interest in continuous report
tasks in visual working memory, relatively few studies have inves-
tigated how different types of errors contribute to forgetting in
visual long-term memory. Brady, Konkle, Gill, Oliva, and Alvarez
(2013) used a continuous report task to examine the extent to
which the fidelity of memories and complete forgetting affected
memory, finding that the rate of random guesses increases with
delays but long-term memory precision matches that of working
memory when it is least precise. However, Brady, et al.’s retention
intervals did not exceed about an hour, so they could not assess
forgetting over longer intervals. Moreover, they did not examine
misassociations and consequently may have mischaracterized mis-
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associations as random guesses, and underestimated how much
information long-term memory retained.

Here we examine the time course over which memories are
acquired, gain precision, and form associations during training,
and how these memories then deteriorate over time. We asked
subjects to learn and later recall the locations of objects (Experi-
ments 1, 2, 3) or the distances between cities (Experiment 4). We
then used a mixture model to estimate the precision of their
memories, as well as the proportion of their responses that re-
flected imprecise reports of the correct item, imprecise reports of
one of the other items (a misassociation), or a random guess.

Experiments 1 and 2

To assess how memories formed over the course of learning and
were lost over time, we used a cued-recall task to train subjects on
the locations of objects until they reached a performance criterion
(Experiment 1) and test them after delays up to one week (Exper-
iment 2). On both training and testing trials, subjects recalled the
location of cued objects, but they received the correct location as
feedback only on training trials.

Method

Subjects. Forty subjects from the Amazon Mechanical Turk
marketplace participated in Experiment 1. Because Experiment 2
required subjects to participate in three sessions spanning a week,
we recruited 35 members of the University of California, San
Diego, Psychology Department’s online subject pool. In both
experiments subjects received a flat payment as well as a bonus
based on their performance.

Design. Experiment 1 focused on the acquisition of memories.
Each subject learned the locations of 10 objects using testing with
feedback over multiple blocks. Each subject proceeded through as
many of these training blocks as required to recall the locations of
all the objects in a block sufficiently precisely (see Procedure). The
order of the 10 objects was randomized within each block.

Experiment 2 focused on the forgetting of memories. The train-
ing session was similar to Experiment 1 with the exception that
objects dropped out when they were recalled correctly three blocks
in a row. Once subjects learned the locations of all the objects to
sufficient precision, they performed a distractor task (12 addition
and subtraction problems, each containing two operands that were
whole numbers between 0 and 40), and were then tested on the
object locations. Subjects then returned for two testing sessions
after delays of 1 day (Test Day 1) and 7 days (Test Day 7).

Stimuli. In both experiments subjects trained on the locations
of 10 everyday objects (Figure 1A). The cover story for the task
was that the subject had lost several of their personal belongings in
the ocean and had to remember where those objects were under-
water. Objects were presented in a light blue circle with an island
in the center that acted as a central location landmark and en-
hanced engagement with the cover story (see Figure 1B). Apart
from their role in the cover story, the color of the background and
the island in the center were unrelated to the task.

Because our focus was on learning over many repeated presen-
tations under free-viewing, we did not ask subjects to maintain
fixation. Additionally, because each participant performed the
study in their own web browser, screen size and viewing distance
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Figure 1. The objects used in Experiments 1, 2, and 3 and an example
trial for Experiments 1 and 2. (A) The 10 objects used in the visuospatial
memory task: boot, die, hat, chair, camera, fan, clock, key, bowl, and comb
(in the experiment, objects were presented in full color). (B) In each trial,
subjects were cued to recall the location of the item indicated in the top left
(here, a die). (C) Subjects then clicked a location to respond and a red
crosshair marked their selection. (D) During training trials, subjects were
then shown the item in its correct location for one second (this feedback
was omitted during test trials).

were not explicitly controlled but subjects were instructed to adjust
their browser window size such that the entire experiment display
would fit on the screen.

Each object was represented by a 60 X 60 pixel image of an
everyday object(drawnfromastockimage website: www.freeimages
.com). We selected 10 perceptually and semantically distinct ob-
jects to minimize their confusability, and every subject saw those
same 10 objects. The circle containing the objects had a radius of
450 pixel and the island was 50 X 50 pixel. For each subject, we
generated the locations of objects from a uniform distribution
across the circle (with the constraint that they did not overlap with
the island).

Procedure. Subjects were trained and then tested on the lo-
cations of objects using a cued-recall task (Figure 1B). During the
training phase of both experiments, on each trial subjects saw an
image of an object and reported that object’s location by clicking
within the display circle. After the response, a 50 X 50 pixel red
crosshair appeared at the selected location, and an image of the
object appeared at the correct location. If the response was within
50 pixels of the correct location (such that the crosshair overlapped
with the object image), the response was considered correct.

In the training experiment (Experiment 1), a subject completed
the training phase (and thus the experiment) once she recalled all
the objects correctly in one block. In the training phase of the
retention experiment (Experiment 2), an object was “dropped” out
of the training loop after it was correctly recalled in three consec-
utive blocks, and the training phase was complete once all objects
had been dropped. Trials in the testing phase of Experiment 2 were
the same as training trials, but lacked corrective feedback (instead
the subject’s response was indicated by a red crosshair onscreen
for an extra second).

Results

Did subjects learn and forget the locations of objects? To
coarsely assess learning and forgetting, we can consider the aver-
age distance between the reported and correct locations (calculated
as the root-mean-square error across objects; RMSE). This coarse



This docu

gical Association or one of its allied publishers.

1t is copyrighted by the American Psycholo

is not to be disseminated broadly.

ended solely for the personal use of the inc

This article is 1

FRAGILE ASSOCIATIONS IN LONG-TERM MEMORY 3

measure of learning shows that subjects learned the locations of
objects over approximately 12.25 blocks (SEM = 1.08) of training
in Experiment 1 (Figure 2, Training) and forgot some, but not all,
of what they learned during the 1-week retention interval in
Experiment 2 (Figure 2, Testing). Because the number of blocks it
took subjects to finish training varied, we examined how well
subjects recalled the locations once they completed training by
calculating the RMSE of each subject’s last three blocks of train-
ing (Figure 2, Training, Blocks —2-0). Performance was worse
during the first testing block (Experiment 2) compared to the end
of training (Experiment 1), #(75) = 6.45, p < .001, though we
cannot say how much this should be attributed to rapid forgetting
or subtle differences in the training protocol between the two
experiments. While this coarse error measure shows that subjects
are indeed learning and forgetting something about the locations of
objects, it cannot discern whether errors are attributable to impre-
cision, misassociations, or complete forgetting.

Measuring Imprecision, Misassociations,
and Random Guessing

To characterize the contributions of imprecision, misassocia-
tion, and complete forgetting of memories during learning and
forgetting, we analyzed subjects’ responses with a mixture model,
similar to that used in Bays, Gorgoraptis, Wee, Marshall, and
Husain (2011; Figure 3; see Appendix A for technical details).
Under this model, each response is either an imprecise report of the
target item, an imprecise report of one of the orher items (a
misassociation), or a random guess. A report of the target object
location or a misassociated location is assumed to be distributed as
an isotropic two-dimensional Gaussian centered on an object’s
location. Random guesses are assumed to be samples from a
truncated two-dimensional Gaussian distribution centered in the
environment and bound by the environment’s edge.' The model
estimates a single parameter for the precision of location memo-
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Figure 2. Learning curves from Experiment 1 and the forgetting curve

from Experiment 2. Y-axis is the across-subject mean (=1 SEM across
subjects) of the root-mean-square error (RMSE; Euclidean pixel distance
between the recalled and the correct object location). Training performance
from Experiment 1 is shown on the left (in blocks) and testing performance
from Experiment 2 on the right (in days). Training performance is shown
relative to the beginning of training (Blocks 0 to 20) and relative to the end
of training (Blocks -2 to 0) to illustrate criterion performance. RMSE
decreased during training and increased during testing, indicating the
subjects learned and forgot the locations of objects.
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Figure 3. Schematic of the types of errors we aim to characterize with
the mixture model: imprecise report of the target, misassociation, or
random guess (illustrated with just two objects that are displayed
disproportionately large for visual clarity). The top row shows the true
locations of the objects and the bottom-row shows possible types of
responses. Grey dots represent the locations of the target object (the
chair) and a possible nontarget object (the boot). The grey X indicates
the center of the environment. We use the mixture model to estimate the
probability of each type of error, denoted here by Pr(Target), Pr(Mis-
association), and Pr(Random). If there are multiple nontarget objects,
Pr(Misassociation) is divided evenly among them. Under our error
model, target reports and misassociations are recalled with isotropic,
two-dimensional Gaussian noise around the selected location (small,
grey dashed circles). The model treats random guess responses as
samples from a broad, truncated, two-dimensional Gaussian distribution
around the display center (large, dashed circle).

ries; thus, it assumes that correctly associated responses and re-
sponses when objects are associated with the wrong location have
the same precision around their latent location.” The model also
estimates the mixture weights of each type of response, corre-
sponding to the probabilities that subjects report the location of the
target item, make a misassociation, and randomly guess. Thus, by
analyzing responses via this mixture model, we can estimate the
precision of location memory, the probability of misassociations,
and the probability of complete forgetting (random guessing). We
fit the model in the native coordinate space rather than to the
distribution of response errors (as in Zhang & Luck, 2008), though
our results do not depend on this distinction.

In several of our analyses, we report the posterior distributions
of the parameters estimated by the model in the form of 95%

! Although we did not use truncated normal distributions to model target
or misassociated responses due to computational efficiency, the small
standard deviation of location memories should result in a negligible
portion of the probability density extending outside of the environment,
thus making the truncation correction unnecessary.

21t is possible that locations associated to incorrect objects would be
remembered with different levels of precision. However, we assume that
locations and associations are stored and decay separately such that
whether a location is correctly associated with an object will be indepen-
dent of its precision.
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posterior quantile intervals (PQIs). For further explanation of 95%
PQIs and how we report Bayesian statistics, see Appendix C.
How did the sources of error change during learning? The
imprecision of location memories, the probability of making a
misassociation, and the probability of random guessing all de-
creased over the course of training (Figure 4, Training). To assess
whether some aspects of memories were more quickly acquired,
we quantified the speed with which these sources of error changed
during learning by fitting exponential decay functions of the form

B+ (A— B)eTr to each parameter (see Table 1). A and B indicate
the initial and asymptotic values of the function (such that when A
is greater than B the function will decrease over time), T is a “time
constant” and ¢ is the block number. A larger time constant of the
exponential decay function indicates a slower rate of change in a
given parameter, and thus slower acquisition of this facet of
memory during learning.

To estimate these parameters across subjects, we used a hierar-
chical model that assumes that the parameters for each subject are

A .
g l ‘_ﬁ_ﬁ_ﬁ..'t.".'.'t-ﬁ.‘t.@#ffﬁ -t '.‘
0.8 i o 1
> ]
% 0.6 -a-Target
S - Misassociation
ne. 0.4 ] —Random Guess
°% P;:Stzi
0 . Ib‘h-\ I T
5 10 15 -2 0 01 7
8 Block Day
150
R
Ba -
52 ]
£ 8100~
°og ]
_é 5 ] Training Testing
88 50
EB i I i - . //‘
8 e
0 \ T \ T \
0 5 10 15 -2 0 01 7
Block Day

Figure 4. Estimated imprecision, misassociation and random guessing
for Experiments 1 and 2. (A) The probability of selecting the target objects
(dotted lines and squares), misassociation (associating an object with the
wrong location; dashed lines and diamonds) and randomly guessing (solid
lines and dots) during the training blocks in Experiment 1, and testing
blocks in Experiment 2. In the training blocks, the points show across-
subject estimates of the different response types and the lines show expo-
nential fits to those estimates. (B) The estimated imprecision (standard
deviation) of remembered locations. Consistent with subjects’ root-mean-
square error, the imprecision of locations, the probability of making mis-
associations and the rate of random guessing decreased during training and
increased during testing. All error bars indicate posterior standard devia-
tion.

Table 1
Mean Exponential Fit Parameters

Target Misassociation Random guess SD
Initial (A) 07 [.03,.11] .20[.12,.28] .82[.74,.90] 1116.2[78.2,170.9]
Asymptote (B) .90 [.87,.93] .07[.06,.09] .04[.01,.06] 29.2[28.4,30.0]
Slope (7) 23(1.7,3.0] 1.7[.49,3.0] 19[1.3,2.7] .72 [.50, 1.06]
Note. We fit the parameters using the exponential decay function B +

—1
(A — B)e= . A and B determine the initial and asymptotic values of the
function, 7 is the time constant (exponential slope) and ¢ is time. Numbers
in parentheses indicate the 95% posterior quantile intervals.

normally distributed around the population value, thus allowing us
to efficiently pool estimates across subjects by using the statistics
of the group to compensate for uncertainty in any one subject’s
parameters. We fit the parameters using a Metropolis—Hastings
algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller,
1953).

The time constant for the increasing rate of correct associations
(2.3,95% PQI [1.7, 3.0]) was considerably larger than that for the
decreasing imprecision of locations (.72, 95% PQI [.50, 1.06];
95% PQI [.87, 2.4] on the difference between P[target] and SD
time constants), indicating that subjects learned to associate ob-
jects to locations more slowly than they learned to accurately recall
the exact positions of those locations. This pattern indicates that
precise location memories are acquired quickly, but it takes some
time to correctly associate them with their respective targets.

How did the sources of error change during forgetting?
Although all sources of error increased during forgetting (see
Figure 4), misassociations, unlike noise and random guessing,
increased abruptly after the first day. During testing, the standard
deviation of location memories steadily increased from 28 to 38 to
48 pixels. The probability of random guessing remained constant
over the first two days (95% PQI [—.076, .032] on the difference
between Test Day 0 and Test Day 1) and then increased somewhat
by the final day of testing (95% PQI [—.11, .004] on the difference
between: Test Day 0 and Test Day 7; Test Day 1 and Test Day 7
95% PQI [—.10, .03]). In contrast, in the immediate posttraining
test, subjects made almost no misassociation errors (1.6%), but at
the 1-day retention interval, these jumped to 11%, and by Day 7
had only increased slightly to 14% (95% PQI [.04, .14] on the
difference between Test Day O and Test Day 1; Test Day 1 and
Test Day 7 95% PQI [—.10, .03]). When we directly compared
changes in the rates of misassociation and random guessing, the
probability of misassociations trended toward increasing more
from Test Day O to Test Day 1 than the number of random guess
(95% PQI [—.014, .15] on the difference between misassociations
Test Day 0 and Test Day 1 and random guesses Test Day 0 and
Test Day 1), further suggesting that misassociations were excep-
tionally fragile early on during forgetting. While location memo-
ries steadily became less precise from the end of training and
gradually became irretrievable, memories of associations were
preserved in the immediate posttraining test but deteriorated
sharply after a single day.

How did errors contribute to performance during learning
and forgetting? Based on the estimated probabilities of random
guessing and misassociations, and the imprecision of location
memories, we can infer how much each of these sources of error
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contributes to the overall RMSE at different points in time. To do
so we use maximum likelihood estimation to classify responses as
noisy correct responses, noisy misassociations or random guesses.
We then calculate the model’s expected RMSE for each type of
error given the parameter estimates (see Figure 5). Specifically, for
each response, we calculated the error due to precision as the
estimated standard deviation of location memories, the error due to
misassociations as the distance between the target location and the
location of the misassociated item (if applicable), and the error due
to random guessing as the distance between the target location and
the center of the environment (if applicable); we then aggregated
these across items and subjects. The bulk of error reduction during
learning arises from decreasing rates of random guessing as people
learn the locations of objects, but the increased error during for-
getting seems to arise from increasing misassociations as people
retain the locations, but fail to map them onto the correct objects.

Experiment 3

In Experiments 1 and 2, we found that the precision of locations,
and the ability to retrieve and correctly associate locations im-
proved during learning and deteriorated during forgetting. Al-
though all sources of error decreased with training and increased
with forgetting, memories for associations were exceptionally un-
stable and contributed disproportionately to overall error during
learning and especially forgetting.

One shortcoming of the cued-recall task we used in Experiments
1 and 2 is that it can only reveal latent knowledge of locations that
subjects have associated (either correctly or as an incorrect mis-
association) with a cue. If a subject learned a location, but failed to
match it with any of the potential retrieval cues, they may never
produce that location in a cued response. Consequently, this latent
knowledge might not be detectable, even in a model that can detect
misassociations.

In Experiment 3, we aimed to directly measure knowledge of
locations by asking subjects to report the locations in a two-step
procedure: first, in a free-recall portion, they reported all the
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Figure 5. Learning curves from Experiment 1 and the forgetting curve
from Experiment 2 with errors partitioned based on their estimated source.
The black line indicates subjects’ raw root-mean-square error (RMSE;
identical to Figure 2). Shading indicates the estimated errors due to noise
from recalled locations, misassociations and random guessing. Decreasing
errors due to random guessing characterized learning while increasing
errors due to misassociation drove forgetting. px = pixel

locations they remembered and then matched these locations to
objects. Thus, like verbal paired associates tasks that aim to
distinguish object and associative information (Tulving & Wise-
man, 1975), this design removes the demand for correct associa-
tions during location recall and might reveal latent location knowl-
edge that was obscured in Experiments 1 and 2.

Method

Subjects. A new set of subjects from the University of Cali-
fornia, San Diego, Psychology Department’s online subject pool
who did not overlap with the subjects from Experiment 2 partic-
ipated in this three-session experiment for payment. Seventy-four
subjects finished at least Session 1, and 25 completed all three
sessions. Subjects who completed all three sessions received a
monetary bonus based on their performance.

Design. Experiment 3, like Experiment 2, was comprised of
three sessions. In the first session, subjects were trained to crite-
rion. They were tested (without feedback) immediately after train-
ing (Test Day 0), 1 day after training (Test Day 1), and 7 days after
training (Test Day 7).

The critical change introduced in Experiment 3 is the use of a
free-recall task that occurred after every two blocks (starting after
Block 1) during training and that replaced cued recall during
testing. In this free-recall task, subjects reported all the locations
they remembered, and then matched objects to those locations (see
Procedure).

In further contrast to Experiment 2, we omitted the math dis-
tractor task between training and the immediate Day O test. Addi-
tionally, rather than drop out individual objects during training (as
in Experiment 2), subjects recalled the locations of all 10 objects
in each block until all were reported correctly (as in Experiment 1).

Stimuli. The objects were identical to those used in Experi-
ments 1 and 2. We made minor aesthetic changes to the framing of
the task: omitting the island cover story, replacing the central
island with a fixation cross and changing the color of the back-
ground to white. To prevent locations from overlapping during the
free-recall task, we required the centers of objects to be located
120 pixels (two objects) from each other. We also decreased the
size of the environment to a radius of 275 pixels to allow room for
the free-recall task.

Procedure. In Session 1, subjects recalled the location of a
cued object and received feedback, as in Experiment 1. We inter-
leaved these training blocks with a free-recall phase (see Figure 6).
Free recall occurred after the first block and every two blocks
afterward. During the free-recall phase, subjects saw 10 black
circles at the bottom of the screen, and were instructed to place
those (by clicking and dragging) at the locations of the 10 objects.
They could rearrange the placed circles as much as they desired.
Once subjects indicated that they were done placing the circles,
they saw all 10 objects on the bottom of the screen, and matched
the objects to their locations by clicking on an object and then a
location. They had unlimited time to perform the location recall
and object matching subtasks, and they received no feedback at the
end of free recall and matching. During testing, subjects reported
the locations of the objects using the free-recall task instead of the
cued-recall task.
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Figure 6. Example free-recall trial from Experiment 3. (A) Subjects saw 10 black circles that would mark the
locations of objects and (B) placed the circles wherever they recalled the location of an object. (C) Once subjects
placed all ten circles, they saw all 10 objects in a random order and (D) matched the objects to the locations.
Subjects had unlimited time to do the location recall and object matching phases and could rearrange the
locations and object-to-location assignments as much as they wanted.

Results

Did subjects learn and forget the locations of objects? As
in Experiments 1 and 2, subjects learned the locations of objects
during training and forgot them during testing (see Figure 7).
During training, the cued and free-recall performance of each
subject in each block was strongly correlated (r = .72, p < .001),
indicating that both tasks adequately evaluate memory. We used a
mixed effects model to test whether subjects performed better in
the free-recall versus cued-recall task, treating task type, block,
and their interaction as fixed effects and subjects as random
effects. Subjects performed better in the free-recall task, #(600) =
3.84, p < .001, perhaps because this task discourages random
guessing and encourages misassociations or allows subjects to
choose the order in which they recall the objects (e.g., strongest
items first). Additionally, this improvement significantly inter-
acted with block number, #600) = 2.98, p = .002, reflecting
subjects learning associations for the cued-recall task over time.

How did subjects learn and forget locations separate from
associations? We used our error model to obtain maximum
likelihood estimation estimates of the number of unique locations
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Figure 7. Learning and forgetting in Experiment 3 measured in root-
mean-square error (RMSE) for the cued-recall task during training and the
free-recall task during training and testing. The grey line indicates cued-
recall performance and the black points and line indicate free-recall per-
formance. Training results reflect all 74 subjects that finished Session 1 and
testing results reflect the 25 subjects that finished all three sessions. Cued-
and free-recall performance during training were very similar. Error bars
indicate =1 SEM across subjects. px = pixel.

recalled (i.e., locations that were classified as either correctly
associated or as misassociations) during the cued-recall and the
free-recall task (see Figure 8). For comparison, we also determined
the locations recalled during cued recall in Experiments 1 and 2.
The training results reflect all 74 subjects who completed Session
1 and the testing results reflect the 25 subjects who completed all
three sessions. To compare the number of locations recalled across
tasks, we again used mixed effect models, treating task type, block
and their interaction as fixed effects and subjects as random
effects. The number of locations recalled during cued recall was
similar to Experiment 1, suggesting that including the free-recall
task did not change how subjects learned the locations of objects.

During training, subjects recalled more locations when using
free recall than when using cued recall, #(600) = 9.67, p < .001.
For instance, after the first block, subjects recalled on average 8.0
(SEM = .13) of the 10 locations during free recall compared to 5.2
(SEM = .28) during cued recall. There was also a significant
interaction between task type and block number, #(600) = 7.52,
p < .001, reflecting subjects learning the associations between
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Figure 8. Estimated number of unique object locations recalled as
either correctly associated responses or misassociations during training
and testing. Grey points are the number of locations recalled in blocks
of the cued-recall task matched to the free-recall blocks. Black points
indicate the number of locations reported in the free-recall task. For
comparison, the shaded grey areas show the number of locations
recalled in single blocks from Experiments 1 (Training) and 2 (Testing).
Subjects correctly recalled more locations in the free-recall task than in
cued-recall tasks. Error bars indicate =1 SEM across subjects.
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objects and locations and consequently recalling locations increas-
ingly accurately during cued recall.

By comparing the number of locations recalled during free recall in
Experiment 3 to cued-recall performance in Experiment 2, we could
directly assess the contribution of lost associations to apparent for-
getting. In the immediate posttraining test (Test Day 0), we found that
the number of locations recalled during free recall trended toward
being greater than the number of locations recalled during cued recall;
nevertheless, they did not significantly differ, (60) = 1.89, p = .06.
However, there was a significant interaction between task type and
block number, #179) = 2.06, p = .041, indicating that subjects
performing free recall increasingly recalled more locations than sub-
jects performing the cued-recall task. Altogether, over delays up to a
week, subjects appear to remember the locations they learned but
forget the objects to which those locations correspond. During recall,
this loss of associations can result in subjects either making misasso-
ciations or randomly guessing.

Experiment 4

In the previous experiments, we found that forming and main-
taining associations were the main factors limiting long-term visu-
ospatial memory for locations. Is this also true for verbal memory?
On one hand, both visual and verbal memory exhibit classic
memory phenomena like a benefit to retention from spaced prac-
tice (visual: Paivio, 1974; verbal: Ebbinghaus, 1913) as well as
advantages from primacy and recency (visual: Hollingworth, 2004;
verbal: Ebbinghaus, 1913). So we might expect that forgetting
operates similarly for both types of memory. On the other hand,
visual and verbal working memory seem to rely on mechanisms
dissociable with interference tasks (Baddeley & Hitch, 1974) and
there are discrepancies in the magnitude of recency effects for
auditory and visual information (Murdock & Walker, 1969; Ma-
digan, 1971), so perhaps forgetting would also operate differently.
In Experiment 4 we assess the contributions of imprecision, mis-
association, and wholesale forgetting to long-term memory errors
during learning and forgetting for verbally presented qualities.
Specifically, we aimed to assess whether verbal memory follows a
similar pattern of deterioration as visuospatial memory by training
subjects on numerical values: the “great circle” distance between
pairs of cities. Furthermore, we extended the delay period to
examine forgetting over even longer periods of time.

Method

Subjects. Twenty-four subjects recruited through our online
subject pool participated in this four-session experiment for pay-
ment with an additional monetary reward for good performance.

Design. Subjects participated in one training session followed
by three testing sessions. In the first session, subjects were trained
on 24 facts. Like in Experiment 2, within each block the order of
the facts was randomized and facts dropped out when they were
recalled accurately. At the end of the first session, subjects recalled
all 24 facts (Test Week 0). Subsequent testing sessions occurred 1
week (Test Week 1), 2 weeks (Test Week 2), and 4 weeks (Test
Week 4) following the training session. To control for testing
effects of the 24 facts, six were presented on all three testing
sessions, while the other 18 appeared in only one testing session
(six in each of the three testing sessions). Thus, in each testing

session participants were probed on 12 facts: six that were tested
in every session and six unique to that session.

Stimuli. Subjects learned 24 distances® between pairs of cit-
ies. The distances were the great circle distances (the shortest
distance between two points on a sphere). For example, subjects
would learn that the distance between Amsterdam, The Nether-
lands, and Athens, Greece, is 1,343 miles. Henceforth, we report
the log,, distances.* The mean log distance was 3.6, with a
standard deviation of .35.

Procedure. In Session 1, subjects trained on 24 city-distance
pairs over multiple blocks. On every trial, subjects saw two city
names and reported the great circle distance between those cities;
subjects then received feedback with the correct distance. Thus, in
the first block, every response was a guess informed only by
subjects’ prior geography knowledge, but in subsequent blocks,
subjects would have learned from the feedback. As in Experiment
2, subjects were trained to criterion with dropout; specifically,
after subjects reported the distance for a particular city pair cor-
rectly (within 1%) once, that item was excluded from subsequent
training blocks. In each test session, subjects recalled 12 of the
distances (see Design) but did not receive feedback.

Results

Did subjects learn and forget the facts? Subjects’ raw per-
formance (as measured by the RMSE of their log-transformed
responses) improved throughout training and deteriorated during
the testing sessions (see Figure 9). Training took on average 17.21
blocks (SEM = .24). Subjects forgot the facts quickly such that
RMSEs in Test Weeks 1, 2, and 4 were indistinguishable from the
first training block (mixed effect model treating block as a fixed
effect and subject as a random effect, main effect of block):
#(94) = 1.58, p = .11.° There were also no discernible differences
in RMSE for facts recalled during repeated testing sessions versus
only during individual testing sessions (mixed effect model treat-
ing task, block and their interaction as fixed effects and subject as
a random effect, main effect of task): #140) = .037, p = .97;
interaction between task and block: #(140) = .64, p = .52: thus, we
pool them in subsequent analyses.

How did the sources of error change during learning and
forgetting? We fit the error model to subjects’ responses to
estimate the sources of errors in the first training block and the four
testing blocks (see Figure 10). Objects dropping out during train-
ing prevented us from analyzing the other training blocks.

In the first training block, a combination of imprecise prior
knowledge, and mutual information across items (e.g., learning the
distance between Amsterdam and Greece may bias estimates of the
distance between Berlin, Germany, and Ankara, Turkey) precluded
any decisive analyses of error contributions. Specifically, re-
sponses were frequently characterized as recalled target distances
or as misassociations, despite this being the first training block.

3 Subjects chose whether the distances were in miles or kilometers. Here,
all distances are presented in miles.

* Analysis in log space respects the Weber-law-like noise pattern com-
mon to magnitude, number, and length estimation.

5 This rapid forgetting compared to the previous experiments may reflect
any of a number of differences between the experiments: for example, the
larger number of items, the lower training criterion, or differences in
associating city pairs with continuous numbers.
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These responses may have reflected subjects’ imprecise prior
knowledge of geography since these apparently informed re-
sponses had very low precision (.16, 95% PQI [.14, .19]), or may
correspond to subjects making responses based on feedback they
received in previous trials of the same block. In short, people
started out training with vague ideas about city pair distances and
their relationships.

In the immediate posttraining test (Test Week 0), subjects re-
called the locations precisely (.0069, 95% PQI [.0060, .0079]), and
made few misassociations (.25, 95% PQI [.20, .30]), consistent
with their overall low RMSE in this immediate test. RMSE in
testing sessions at 1- to 4-week delays, suggests that subjects
returned to their baseline pretraining performance after just a
1-week delay. At face value, this could indicate that subjects forgot
everything they learned and reverted to randomly guessing based
on their prior knowledge. On the other hand, the high RMSE might
instead reflect subjects making many misassociations, which
would indicate that subjects actually retained accurate memories of
facts, but not associations between city pairs and distances.

Indeed, the high RMSEs in Test Weeks 1, 2, and 4 seem to be
caused by very high rates of precisely reported, but incorrectly
associated, distances. For instance, Test Week 1, distance impre-
cision was just .030 (95% PQI [.023, .039]), compared to .16 (95%
PQI [.14, .19]) in the first training block (95% PQI [.11, .16] on the
difference between baseline and Day 7), demonstrating that facts
are being remembered precisely. Overall RMSE is indistinguish-
able, however, due to a 49% (95% PQI [38%, 60%]) misassocia-
tion rate. Similarly, the precision of correctly and incorrectly
associated distances after 2 weeks (.064, 95% PQI [.049, .083])
and 4 weeks (.10, 95% PQI [.072, .13]) is better than baseline
(95% PQI [.067, .13] on the difference between baseline and Day
14; 95% PQI [.024, .10] baseline and Day 28), but this latent
knowledge is not evident in RMSE due to high misassociation
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Figure 9. Learning and forgetting curves for Experiment 4. Error was
measured in log10 root-mean-square error (RMSE). The first 20 blocks of
training is left (in blocks) and testing is right (in days). Because subjects
completed training in different numbers of blocks, we imputed their results
for subsequent blocks in the learning curve to avoid misrepresenting errors
in later blocks (our analyses do not rely on these imputed values). For
testing, the continuous black lines indicate facts that were tested every
session and the grey points indicate facts that were only tested in that
session. Subjects learned the locations during training and appeared to
return to baseline after one week. Error bars indicate =1 SEM across
subjects.
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Figure 10. Estimated noise, misassociation and random guessing for
Experiment 4. (A) Estimated probability of selecting the target (dotted lines
and squares), making a misassociation (dashed lines and diamonds) and
randomly guessing (solid lines and dots). (B) The standard deviation (SD)
of recalled facts. (C) The standard deviation of random guesses around the
mean distance. In these graphs, the first block of training acts as baseline
performance (base). The continuous lines indicate performance during the
four testing blocks. During forgetting, subjects remembered many dis-
tances precisely but associated them to the wrong city pairs. Error bars
indicate posterior standard deviation.

rates (Day 14: 56%, 95% PQI [44%, 67%]; Day 28: 47%, 95% PQI
[34%, 60%]).Thus, it seems that verbal numerical memory for city
pair distances—like memory for object locations—is primarily
hampered by misassociations, so much so that they obscure rela-
tively precise, and stable, latent knowledge of learned distances
when considering overall measures of error.

General Discussion

Previous work has primarily evaluated the acquisition and loss of
information in long-term memory by using binary measures such as
“recalled versus not recalled.” These studies have documented long-
term memory’s large capacity and temporal stability. Here, we exam-
ined the mechanisms of forgetting in a finer grained manner, asking
how noise, misassociations and complete loss of memory traces
contributed to declines in memory performance over time. Consistent
with previous characterizations of long-term memory, we found that
verbal and visual long-term memory representations were extremely
robust over long delays and that visual long-term memories formed
very quickly. The chief limitation on long-term memory—apparent in
both acquisition and forgetting—was a difficulty forming the correct
associations and maintaining those associations over time. Accord-
ingly, our comparison of performance in cued and free-recall tasks
suggests that the free-recall task helped disentangle memories of
locations and associations, allowing us to more accurately assess the
contents of visual memory.
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Learning and Forgetting in Long-Term Memory

We show that although long-term memory is impressive in its
ability to retain precise facts, it is strikingly limited in its ability to
form and recall associations between memories. These results are
consistent with earlier investigations of verbal long-term memory
demonstrating that the recency effect deteriorates much more
rapidly for paired associates (Murdock, 1967) than for individual
items (Murdock & Kahana, 1993). This may reflect associative
information being fragile or memories interfering with each other
(Briggs, 1954; Barnes & Underwood, 1959; Underwood, 1957).

We find that misassociations drive forgetting in long-term mem-
ory and, to a lesser extent, these memories become less precise
over time. In contrast, Brady et al. (2013) found that long-term
memories exist in a constant, low-fidelity state and spontaneously
give way to random guesses. Although seemingly in conflict, these
two sets of results may actually be quite consistent. Our subjects
were trained to criterion, while the subjects trained by Brady et al.
saw stimuli only briefly. Consequently, long-term memories in
Brady et al. may have never gained enough precision to yield
detectable losses. Moreover, because Brady et al. could not esti-
mate misassociations, such responses would have appeared as
random guesses in their data. Thus, both sets of results are con-
sistent with misassociations being the primary cause of forgetting.

Comparison to Visual Working Memory

Our finding that during learning and forgetting subjects often knew
locations but did not associate them is somewhat similar to previous
findings that visual working memory represents (Vul & Rich, 2010)
and forgets (Fougnie & Alvarez, 2011) the features of objects inde-
pendently, and that the appropriate binding (association) of these
features is fragile over time (Gorgoraptis et al., 2011). The difficulty
of binding features together in visual working memory and the asso-
ciative limits of visual long-term memory may reflect a common
limitation on our ability to correctly associate features together.

When we removed the need to associate locations with objects
in the free-recall task, we found subjects recalled many more
locations than during parallel cued-recall tasks. Similarly, using
different stimuli and memory probes in working memory experi-
ments can affect the difficulty of recalling associative information.
Stimuli with dependent integral features (Fougnie & Alvarez,
2011; Bae & Flombaum, 2013) or that do not suffer from proactive
interference (Endress & Potter, 2014) result in larger estimates of
visual short-term memory capacity. Likewise, probing memory
using a two-alternative forced-choice task instead of a same-
different task can make it more difficult to keep track of associa-
tions (Makovski, Watson, Koutstaal, & Jiang, 2010). Varying the
distinguishability of stimuli and the method of recall may help
determine when visual working memory is limited by observers’
ability to recall features versus the associations between them.

Limitations

We treated the free-recall and cued-recall tasks in Experiment 3 as
comparable tasks, differing only in how subjects recalled locations.
However, the tasks may have encouraged subjects to encode the
objects differently. Simultaneous report (as in the free-recall task)
compared to sequential report (as in the cued-recall task) may have

encouraged subjects’ to encode objects based on their “ensemble
statistics” (Chong & Treisman, 2005; Brady & Alvarez, 2011). Using
such statistics may have even helped subjects remember the objects
more accurately (Orhan, Sims, Jacobs, & Knill, 2014). Although free
recall helped us assess subjects” memories of unassociated and/or
incorrectly associated locations, whether the free-recall task intro-
duced differences in performance requires further investigation.

Additionally, recall performance may have been hindered by the
lack of natural structure in our task. Memory relies on prior
expectations (Bartlett, 1932) and using real-world priors can im-
pair recall when those priors are inconsistent with structure in the
experiment (Orhan & Jacobs, 2014). In Experiments 1-3, for
example, subjects could have expected the hat and boot to be close
together (because both are articles of clothing), conflicting with the
actual randomness of locations in the experiment. In contrast,
using stimuli that are structured consistently with subjects’ prior
expectations improves the fidelity of memories (Orhan et al.,
2014). If the structure of the stimuli in our task was consistent with
subjects’ prior expectations, subjects may have exhibited different
patterns of learning and forgetting.

Implications

Instead of passively observing stimuli during training, in our
study subjects reported locations/distances and received feedback.
Many studies have shown that different training manipulations,
such as spacing presentations (see Cepeda, Vul, Rohrer, Wixted, &
Pashler 2008, for a review), review through testing rather than
restudy (Bjork & Bjork, 1992; Roediger & Karpicke, 2006) and
allowing self-directed learning (Markant & Gureckis, 2014) can
aid the formation and long-term survival of memories. Asking how
these different training techniques affect the sources of people’s
error may help reveal the mechanisms that these techniques rely
upon and the associative limitations of long-term memory.

Conclusions

We described a number of experiments designed to assess the
contributions of imprecision, misassociation, and the absence of rel-
evant memory traces in memory to limited performance in learning
and forgetting. When remembering visual and verbal stimuli, people
quickly formed fairly accurate memories for scalar quantities (loca-
tions and distance), with this precision decaying only minimally over
time. In both cases, however, associations between those memories
were learned slowly and were readily lost over time.
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Appendix A

Model Overview

We used a finite mixture model similar to that used in Bays et
al. (2011) to estimate the precision of memories and the probability
of responses reflecting misassociations and random guessing. For-
mally, we are interested in estimating three parameters: the prob-
ability of selecting the target object (p), the probability of making
a misassociation (py,;), and the imprecision of correct responses
and misassociations around remembered features (o). The proba-
bilities of selecting the target object and making a misassociation
determined the probability of random guesses (px = 1 — py— pap)-
Thus, the basic mixture-model likelihood of reporting a particular
feature, y, for a particular item ¢ out of n items total is

1
P(y|t) = psN(y|x, 0) + pM<m>E Ny |x;,0)

i#t
+ (1 = pr—puRG),

where x; is the feature value for item 7 and Ei;t | denotes a sum
over all the nontarget items (candidate misassociations). Thus, the
probability of making a misassociation is evenly split among all the
items that are candidate misassociations. N(y | m,s) denotes the den-
sity at a of a normal distribution with mean m and standard deviation
s, and R(y) indicates the likelihood of randomly guessing y.

We modified the likelihood of random guessing, R(y), in two
ways to reflect the specific structure of our tasks. First, for Exper-
iments 1-3, we modeled the distribution of random guesses as a
two-dimensional Gaussian distribution around the mean feature
value (the center of the environment) truncated by the borders of
the environment. In Experiment 4, we used a one-dimensional
Gaussian distribution centered on the mean feature value (the
average log,, distance between cities) but because log distances
are unbounded we did not truncate the distribution. In contrast,
many prior studies using mixture models use a uniform distribu-
tion for random guesses (e.g., Zhang & Luck, 2008). In those
cases, the feature values are often circular (e.g., hue angle) and
thus have no natural “center.” However, in both of our tasks, there
is a natural center (either the center of the display, or the average
distance) to which random guesses may be drawn to minimize
expected errors. The truncated two-dimensional Gaussian and un-
bounded one-dimensional Gaussian likelihood functions offer a
convenient way to parameterize between these random guessing
strategies. With large standard deviations, these distributions will
behave like a uniform distribution and with a small standard
deviation will resemble responses around the central value.

In Experiments 1-3, we set the standard deviation of random
guesses (o) to the empirical standard deviation of all responses
(we discuss this decision in later in Appendix D). In Experiment 4,
we estimated the standard deviation of random guesses (o), just

as we estimated the standard deviation of recalled locations (o).
We fit these parameters differently across experiments because the
range of possible locations in Experiments 1-3 was constrained by
the border of the environment but in Experiment 4 subjects’
estimates of the range of possible distances changed over time.

Second, in Experiments 1-3, in addition to subjects selecting
random values around the mean, we accounted for two other types
of random guessing. When first learning the locations of the
objects, subjects often either clicked the same location repeatedly
or clicked the location of the preceding object. The first clearly
does not reflect an attempt to recall the cued object’s location. The
second could indicate an attempt to correctly recall the cued
object’s location. However, given that the order of presentation
was block randomized and that it is unlikely subjects forgot the
correct object-location association over the course of a single trial,
in these trials, subjects most likely reported the wrong location
intentionally. Our decision to account for these additional types of
random guessing was supported by alternate forms of random
guessing having a shorter response time than randomly guessing
around the center of the environment (mixed-effect model treating
error type as a fixed effect and subject as a random effect, main
effect of error type): #(1,667) = 3.4, p < .001. Consequently, we
account for both types of responses and classify them as random
guessing.

We extend our random guessing process to account for re-
sponses based on the previous response or feedback by treating
them as responses centered on the previous response or previous
object, respectively, with small standard deviations (o,). This
introduces one additional parameter that describes the probability
of random guesses broadly distributed around the center (pg;) and
the probability of structured random guesses (1 — pg;). (1 — pry) is
evenly split between the two types of structured random guessing.
Thus, the probability that responses are broadly distributed random
clicks around the environment will be (1 — pr — py)Pr.s the
guesses that are repeated clicks of the previous response, or rep-
etitions of the previously presented location, will both be
(I = pr = (1 = pg1)

2
bility of random guesses as (I — p — py) = Pr-

We vary the random guessing parameters based on the con-
straints of the different tasks in our experiments. In Experiment 1
and cued recall in Experiment 3, when structured forms of random
guessing were most likely to occur, we estimate pg, . In Experi-
ment 2 (where subjects know the locations) and free recall in
Experiment 3 (where subjects cannot use a structured form random
guessing) we set pr, to zero.

. In the main paper, we report the proba-

(Appendices continue)
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For Experiments 1-3, we modified random guessing to use a
truncated two-dimensional Gaussian distribution and to account
for additional forms of random guessing results in the likelihood of
random guessing, R(y) becoming

R(y) = = pr—= pm)PriPO | gs O, 7)

1—pr— 1-
+( Pr pzM)( Dr1)

N(y | Xresps 00)

n (1 _pT_I;M)(l — Pr1)

N(y | x()hj’ 0(})7

where ®(a | M, SD, b) indicates the density at a of a truncated
normal distribution with mean M, standard deviation SD and
bound b. g, o and r indicate the center of the environment, the
empirical standard deviation of responses and the radius of the
environment, respectively. x,,, indicates the previous response,
Xop; indicates the previously presented stimuli (in the first trial, the
previous response/stimuli was substituted with the mean value),
and o, is the standard deviation of responses around repeated
responses/locations which we set to be very small (o, = 5 px).

Consequently, the full likelihood of reporting a particular fea-
ture, y, is

i#t

1
P(y|t) = psN(y|x, 0) + pM(ﬁ)E Ny |x;,0)

+ (= pr— pwPrI PO | g, O, 7)

1—pr— 1-
n ( Pr— Pu Pr1)

2 N(y | KXresps 0-0)

n (1 _PT_PZM)(1 — Pr1)

N(y | xobj’ (To)'

For Experiment 4, the random guessing likelihood is just a normal
distribution; thus, the complete likelihood function is

1
P(y|t) = pN(y|x, 0) + pM(m)é NG |x;, 0)

+ prIN(Y [ gs OR),

where py and oy indicate the mean distance between cities and the
estimated standard deviation of random guesses (in log units),
respectively. For each block we fit the model across subjects using
a Gibbs sampler (Geman & Geman, 1984). Our analyses of the
parameter fits use 700 samples from the posterior (without thin-
ning).

Appendix B

Model Comparison

In our analyses, we used a finite mixture model that captures
errors due to noise, misassociations and random guessing. How-
ever, it is possible that the model falsely interpreted locations
recalled very noisily as misassociations or random guesses. To
examine whether subjects indeed made misassociations and ran-
dom guesses, for Experiments 1 and 2, we tested how well mixture
models without misassociations, without random guessing and
without either type of error predicted subjects’ responses. For each
model, we calculated how well the model fit subjects’ responses in
each block or session, as measured by their Akaike information
criterion (AIC; Figure B1A). Smaller AICs reflect better model
fits.

The full model fit subjects’ responses well during training in
Experiment 1 and testing during Experiment 2. To test when the

full model provided the best fit, for each block/session, we found
the difference between the model with the smallest AIC (that was
not the full model) and the full model (Figure B1B). Differences
greater than zero indicate that the full model had a smaller AIC and
was a better fit. The full model provided the best fit during the last
13 blocks of training in Experiment 1 and the first two sessions of
testing in Experiment 2, indicating that subjects did indeed make
misassociations and random guesses throughout our studies. Ad-
ditionally, the model without random guessing but with misasso-
ciations performed much better than the full model during training
early on and comparably during the final block of testing. The
good fit of the model without random guessing demonstrates that
possessing the correct associations was an important part of learn-
ing and forgetting.

(Appendices continue)
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Figure BI. Model comparison of the mixture model with and without different types of errors for Experiments
1 and 2. Full is the full model (solid black line), No Mis is the model without misassociations (solid gray line),
No Rand is the model without random guessing (dotted black line), and Target is the model with neither
misassociations nor random guessing, making solely noisy guesses around the target object (dotted gray line).
(A) Model fits as measured by Akaike information criterion (AIC). Smaller AIC values indicate better fits.
Decreasing AICs during training reflect subjects completing the experiment and dropping out. (B) The difference
in AIC between the full model and best fitting model that was not the full model. Differences greater than zero
indicate the full model fit best. (C) Model fits as measured by average log-likelihoods. Less negative
log-likelihoods indicate better fits. Although the model without random guessing performs best during early
training, the full model captures subjects’ performance best in the rest of the study. AIC error bars indicate
posterior standard deviation, likelihood error bars indicate standard error of the mean.

Appendix C

Bayesian Statistic Reports

13

Several of our analyses report the posterior distributions of the
parameters. Consider this example: “The time constant for the
increasing rate of correct associations (2.3, 95% PQI [1.7, 3.0]).”
Here, 2.3 indicates the mean time constant; the values within the
brackets following “95% PQI” denote that 1.7 is the time constant

at the 0.025 posterior quantile and 3.0 is the time constant at the
0.975 posterior quantile; and the posterior probability that the time
constant falls within that interval is 95%. Because 95% of the
sampled time constants fell above 0, this 95% PQI demonstrates
that we can be confident that the time constant was positive.

(Appendices continue)
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Appendix D

Dispersion of Random Guesses

In Experiments 1-3, we used the empirical standard deviation of
subjects’ responses around the center of the environment as the
standard deviation of the truncated two-dimensional random
guessing Gaussian distributions. However, because this calculation
includes all reported locations (including those classified as correct
reports and misassociations), it may have systematically overesti-
mated the dispersion of random guesses. To examine whether the
empirical standard deviation of responses was an accurate measure
of the dispersion of random guesses, we modified our mixture
model to estimate the standard deviation of random guesses and
then compared the empirical and model estimated dispersion.

In every block and session, the empirical standard deviation fell
within the 95% PQI of the dispersion estimated by the model
(Figure D1), demonstrating that the empirical standard deviation
was an accurate substitute for estimating the dispersion of random
guesses explicitly. Moreover, since random guessing was rela-
tively rare in later training blocks, explicit estimates of random
guessing dispersion were highly unstable (as reflected by the very
large 95% posterior intervals). In contrast, using the empirical
standard deviation of responses yields a consistent and stable
estimate throughout the training session.

—~ 4
8 ] Training Testing
o 1
85‘3.5i
R
o 3 —
&8 - Empirical
R 1ot
8.% 25 Estimated T i
P
S 2
2 ] |
g 7
S 1.5 | 1 1 I |
10 15 -2 0 01 7
Block Day
Figure D1. Empirical vs. estimated dispersion of random guessing. Em-

pirical (black, dotted line) indicates the standard deviation of all of the
subjects’ responses around the center of the environment in each block/
session. Estimated (gray, solid lines) indicates the model estimated stan-
dard deviation of random guesses around the center of the environment.
The empirical standard deviation was generally a good approximation for
the standard deviation of random guesses, and was far more stable, given
that some blocks contained very few random guesses. Error bars indicate
95% posterior quantile interval.

Appendix E

Imprecision Parameter Recovery With High Levels of Random Guessing

We used our model to estimate the probability of selecting the
target object, making a misassociation, randomly guessing, and the
imprecision of recalled locations. However, in early training
blocks the small number of locations recalled as targets or misas-
sociations may have undermined our ability to estimate the impre-
cision of locations. Furthermore, in such situations, high levels of
random guesses may have been interpreted as very noisy correct
responses or misassociations, inflating estimates of imprecision.

To examine whether the model could accurately estimate the
imprecision of responses, we generated artificial data by drawing
samples from our model with different parameter values. We
focused on parameter values with high levels of random guessing
to best capture conditions during early training blocks. Half of our
parameters sets had a high probability of random guesses and a
small probability of correct target selections (Figure E1A). The
second half had a high probability of random guesses and a small
probability of making misassociations (Figure E1B). We then used

the model to recover the parameter values used to generate the
data. For simplicity, we kept pg, to zero when generating samples
and estimating parameters.

The model was able to successfully recover the parameters used
to generate the artificial data. The true and recovered imprecision
were highly correlated (smallest - r = .99, p < .001), and
deviated only slightly from the identity line, reflecting a slight
tendency to underestimate imprecision when random guessing was
common (most regression slopes in the range, [.95, .99]; most
deviant slope from 1 was 0.96, 95% CI [.95, .98]). Rather than
inflate noise estimates, the model slightly underestimated the im-
precision of responses (largest slope: .987, 95% CI [.981, .994]);
this underestimation may reflect exceptionally noisy responses
being more likely to be interpreted as random guesses, when the
base rate of random guessing is high. Together, these results
suggest that the model was able to adequately recover the impre-
cision of responses even under high levels of random guessing.

(Appendices continue)
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In Experiments 1 and 2, we examined how reaction times
varied for selecting the target item, making a misassociation
and randomly guessing. We used mixed-effect models that treat
error type as a fixed effect and subject as a random effect to test
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Imprecision parameter recovery when responses are (A) a mixture of correct target selections and

random guesses and (B) a mixture of misassociations and random guesses. From left to right, each panel
indicates mixtures with increasing proportions of random guesses. For example, in (A), the panel “Probability
Random Guess = .9” indicates that the probability of selecting the correct object was .1 and the probability of
randomly guessing was .9. Each black point indicates the true log imprecision used to generate responses
(X-axis) and the log imprecision estimated by the model (Y-axis). Dashed gray lines indicate equality. The model
was able to consistently recover the imprecision of responses, even under very high levels of random guessing.

Appendix F

Reaction Times and Response Type

p = .84.

whether different types of errors had different response times.
We found no effect of error type on reaction time in Experiment
1, 1(4,678) = 1.2, p = .23, and Experiment 2, #(1,108) = .22,
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