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We briefly describe the circularity/non-independence problem, and our perception of the impact the ensuing
discussion has had on fMRI research.
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In early 2005 a speaker in our department reported that BOLD ac-
tivity in a small region of the brain can account for the great majority
of the variance in speed with which subjects walk out of the experi-
ment several hours later (this finding was never published as far as
we know). The implications of this result struck us as puzzling, to
say the least: Are walking speeds really so reliable that most of their
variability can be predicted? Does a focal cortical region determine
walking speeds? Are walking speeds largely predetermined hours in
advance? These implications all struck us as far-fetched. This puzzle-
ment, and a few other encounters with similarly remarkable correla-
tions, prompted us a few years later to look into the matter further.
We started by asking if dramatically high correlations between fMRI
data and individual differences in social behavior were frequent in
the literature. It turned out that they were common in all types of
brain imaging studies that were looking at individual differences
across people. While we suspected that something must be terribly
amiss with these reported correlations, at first it was not at all appar-
ent what that might be. Our efforts to figure this out led to a 2009 ar-
ticle – initially titled “Voodoo Correlations in Social Neuroscience” –

which generated far more interest and controversy than we had re-
motely anticipated.

When we began looking into these correlations we were of course
mindful of the fact that the brain contains a great many voxels, and
suspicious that some sort of "voxel shopping" lay at the root of the
problem. However, since the late 90s, fMRI practitioners have been
well aware of the multiple-comparisons problem, and most of the pa-
pers reporting high correlations alluded to precautionary measures
taken to correct for multiple comparisons.

Our interest in probing the matter was further whetted by an ep-
isode occurring a short while later: Grill-Spector (Grill-Spector et al.,
2006) reported that individual voxels in face selective regions have
a variety of stable stimulus preferences; in a critical commentary,
Baker et al. (Baker et al., 2007) found that the analysis used to ascer-
tain this fact implicitly built these conclusions into the method, such
that the same analysis applied to noise data (voxels from the nasal
cavity) revealed a similar variety of stable preferences. It occurred
to us that a similar circularity might underlie the puzzlingly high
correlations.

To figure out whether such a “selection bias” was lurking behind
the surprisingly high correlations between social behavior and focal
brain regions, we surveyed the literature reporting these correlations
and sent out a survey to the authors to ascertain exactly how those
correlations were computed (because most of the method sections

NeuroImage 62 (2012) 945–948

⁎ Corresponding author.
E-mail address: evul@ucsd.edu (E. Vul).

1053-8119/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2012.01.027

Contents lists available at SciVerse ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img



Author's personal copy

did not make this clear). The results revealed that over half of the
reported correlations (and an overwhelming majority when consid-
ering only the very high correlations) were reporting correlations
measured on a region picked out precisely for having very high corre-
lations, and were thus contaminated by the same sort of bias uncov-
ered by Baker et al. (2007).

The essence of the error is that using the same data to filter out vox-
els that carry relevant signal and to estimate the strength/reliability of
that signal results in systematic overestimation of signal strength.
When considering experiments rather than voxels, this effect is
known as “publication bias” — experiments are filtered by the prefer-
ence to publish significant results; thusmeta-analyses reveal systematic
overestimation of effect sizes via funnel plots (Egger et al., 1997). For
fMRI data, where there are many voxels to consider within one experi-
ment, this systematic overestimation can arise within individual ana-
lyses, and to a greater degree because of the large number of voxels in
question.

Intuitively, when dealing with across-subject correlations, the
problem arises because the threshold applied to filter out significantly
correlated voxels imposes a minimum value on the admissible corre-
lation. The correlation measured in any one voxel will necessarily be
some combination of the actual signal (some correlation that will be
observed in that voxel across measurements) and a contribution of
noise. Sometimes the noise will decrease the measured correlation
from its true value, sometimes the noise will increase the apparent
correlation. The measured correlations that pass the significance
threshold will disproportionately reflect those voxels where the
noise happened to have increased the measured correlation (enough
to pass the significance threshold). Thus, the correlations estimated
only in those voxels that passed the significance threshold will sys-
tematically overestimate the underlying correlation by an unknown
amount. This overestimation cannot be corrected for because its mag-
nitude is unknown unless we independently estimate the true corre-
lation value; thus correlations estimated in this manner are
effectively uninterpretable.

The bitter irony of this phenomenon is that correcting for multiple
comparisons when selecting voxels that carry signal exacerbates the
overestimation of the magnitude of signal (Fig. 1). The multiple com-
parisons correction appropriately lowers the probability of falsely
reporting that signal exists when no signal is present; however, it

does not cure the overestimation. Instead, it raises the filtering crite-
rion to identify voxels with meaningful signal; consequently, the
more conservative the multiple comparisons correction (conservative
in the sense of minimizing false alarms), the greater the overestima-
tion of the strength of signals.

Variants of this problem seem to arise in every field that takes on the
considerable challenge of identifying and quantifying signals found in
massively multivariate data, where one cannot ascertain in advance
where the signals of interestmay lie. In psychometrics, Edward Cureton
(Cureton, 1950) showed that when researchers use the same data to
identify which test items to use in constructing a measure designed to
predict a relevant behavioral outcome and also to measure the predic-
tive power of the measure, the estimations of predictive power end
up being “Baloney”, as Cureton termed it. In finance, Lo and MacKinlay
(Lo and MacKinlay, 1990) found that the practice of “data snooping” –
using the same data to group assets into portfolios and then test asset
pricingmodels on those portfolios – “no longer reject the null hypothe-
sis”. In epidemiology, Feinstein (Feinstein, 1988) reported that the com-
mon “data dredging” procedure by which risk factors are identified in
large population surveys involves no a priori hypotheses about which
factors (“diet, smoking, alcohol,” etc.) will yield which outcomes
(“birth defects, stroke, heart disease, cancer, death”) in which demo-
graphics (“age, race, sex, socioeconomic status”); consequently, such
surveys will often falsely report that some everyday behaviors are ei-
ther menaces or boons to public health because they were selected
and validated with the same data (see also Smith and Ebrahim, 2002).
Similarly, in medical gene sequencing, Michiels, Koscielny, and Hill
(Michiels et al., 2005) report that the data mining procedures used to
find genetic associations with cancer outcomes from the thousands of
genes available in microarray data yielded “highly unstable” results
which often “did not classify [new] patients better than chance” (see
also Hunter and Kraft, 2007). Ioannides (Ioannidis, 2005) summarized
which fields are at greater risk for these problems: “The greater the
number and the lesser the selection of tested relationships in a scientific
field, the less likely the research findings are to be true… Fields [with a]
wealth of assembled and tested information, such as microarrays and
other high-throughput discovery-oriented research, should have ex-
tremely low positive predictive value.”

Brain mapping suffers from these risks: a whole-brain fMRI scan
will yield thousands of different voxels, and for novel tasks it is diffi-
cult to specify a priori which voxels ought to show task related signal.
Across-subject whole-brain correlation studies of social behavior and
personality also suffer from low power due to the small numbers of
subjects used in a typical experiment (Yarkoni, 2009) and low
expected effect sizes given the unreliability of personality measures
and fMRI data (Vul et al., 2009a). So it should be no surprise that
about half of the papers in these fields report analyses that include
some version of the data-snooping/data-dredging/non-independence/
circularity/double dipping problem (Kriegeskorte et al., 2009; Vul et
al., 2009a). So how serious is this problem? And how can it be
avoided?

How serious is the problem?

The gravity of such selection biases in reported fMRI results varies
considerably, from simple misleading plots of reported effects, to
overestimated effect sizes, to significant results arising potentially
out of noise (Vul and Kanwisher, 2010). Our impression is that the
frequency of non-independence problems drops off with severity,
and varies across subfields. Across fields the rate of any kind of circu-
larity is between 40% and 56% (Kriegeskorte et al., 2009), and
methods guaranteed to produce effect size overestimation were
used in slightly over half of the studies of social behavior surveyed
(Vul et al., 2009a). A more egregious problem arises when voxels
are selected without appropriate multiple comparisons correction,
and then the signal in those voxels is evaluated using the same

Fig. 1. Overestimation of signals as a function of false alarm rates. Higher thresholds –
like those used for multiple comparisons correction – yield lower probabilities of false
alarms (defined as false discover rate); and result in larger overestimation of effect
sizes. This figure is modified from that in the Appendix of (Vul et al., 2009a), obtained
by simulating a smooth 2D array of voxels. Asterisks on the x axis indicate simulations
with no false alarms. The figure shows the qualitative effect of overestimation increas-
ing as thresholds are increased to correct for multiple comparisons: the quantitative ef-
fects for any given study will depend on the true effect size, the prevalence of signals in
the search volume, and the variability of the noise.
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data. This procedure is likely to result not merely in overestimation of
effects, but also in completely spurious correlations. Fortunately, our
impression is that this aggravated form of the error has been relative-
ly uncommon in the literature.1

Some authors argued that as long as false alarm rates are kept in
check, the overestimation of effect sizes is not a serious problem
(Nichols and Poline, 2009). Statistical analysis without effect size
harks back to the period in the 1950s and 1960s when experimental
psychologists often published tables of ANOVA results (F and
p values) without disclosing means or measures of variability. In
our view, such practices are completely wrongheaded, for reasons
that have been pointed out by many statisticians (e.g., Wilkinson
and Inference, 1999). They are also quite unnecessary — since valid
effect size measures can be readily obtained.

How can this problem be avoided?

Fortunately, all variations of the circularity error –whether simple
misrepresentation of data in graphs, overestimation of effects, or en-
tirely spurious results – can be easily avoided by using independent
data to identify signal-carrying voxels, and reporting estimates of
the signal in those voxels. Most generally, this can be done via
cross-validation: using one part of the data for signal identification,
and a different part of the data for signal estimation. A variety of de-
tailed proposals about how to circumvent such errors have been de-
scribed in a number of recent articles (Kriegeskorte et al., 2009,
2010; Vul and Kanwisher, 2010; Vul et al., 2009a, 2009b).

Reactions to the paper

The immediate reaction to our paper was marked by great expres-
sions of upset and hurt feelings by some of the neuroimaging investi-
gators whose methods and results we had challenged — with
particular indignation focused on the humorous title we had initially
selected for our article ("Voodoo Correlations") (Lieberman et al.,
2009). In hindsight, it seems possible that we might have effectively
communicated our points with a more neutrally worded title, but
we have some doubts about this. More generally, while the disagree-
ment about our statistical argument has subsided, some people still
question whether our paper has had a net positive effect on fMRI re-
search. While we cannot possibly evaluate the total sociological im-
pact of our paper, we consider its impact on the statistical practices
in fMRI to be of greater significance.

In following the neuroimaging literature since our paper was pub-
lished, we have been struck by three things — one very encouraging,
the other two much less so:

First, it appears that the biased correlation measures that we de-
scribed are now quite rare, and when mentioned in talks, are reg-
ularly accompanied by appropriate disclaimers. We have noticed a
few likely exceptions in high profile journals, but the overall inci-
dence of the non-independence error has clearly diminished. Ref-
erence to cross-validation in the neuroimaging literature now
seems more common than it did before 2009. It would be interest-
ing in a few years to compute a histogram of brain-behavior corre-
lation magnitudes appearing subsequent to our paper, to see
whether correlations above, say, .6 now appear as rare as we sug-
gested they ought to be.
Second, on a less cheerful note: since most of the raw data in the
field still exist, our paper had also advocated re-analyses using ap-
propriate methods. Such reports have been exceedingly rare (the

only one we are aware of is by Poldrack and Mumford, 2009). Per-
haps this should not be surprising: even though the scientific en-
terprise would obviously be served by corrections, the incentives
for individual researchers are aligned against reanalyzing and cor-
recting their previously reported findings.
Third, a number of high-profile papers have revealed other com-
mon errors in fMRI analyses that are pervasive enough to under-
mine many results in the literature. These include the “Dead
Salmon” paper pointing out that some of the multiple compari-
sons correction procedures used in the literature are insufficient
and yield higher-than-advertised false alarm rates (and apparent
social cognition in a dead salmon) (Bennett et al., 2010). Another
recent paper points out that, the difference between “significant”
and “not significant” is not itself statistically significant; a statisti-
cal fact that jeopardizes a number of findings that interpret differ-
ent patterns of activation between groups without explicitly
testing the interaction (Nieuwenhuis et al., 2011). Related inter-
pretational issues have been raised previously, resulting in some
positive change in fMRI practice (see for instance: Henson, 2005;
Poldrack, 2006).

Fortunately, non-independence, inadequate multiple comparisons
correction, and not testing an interaction when that's the required
analysis are easy problems: there are plenty of methods available to
overcome them, and we are optimistic that despite the discomfort
caused by the papers that point these problems out, they will be re-
solved, and the literature as a whole will be improved. This leads us
to some harder problems, where our suggestions must of necessity
be more tentative.

Considerations for the future

The discussion about circular analyses has revealed a much more
vexing problem for fMRI analysis, one that lies at or outside the capabil-
ities of current statistical science. One not-infrequent response to the
evidence of inflated effect size estimates has been the suggestion –
mentioned above – that the strength of the signal in a given voxel is
not of import, because the primary goal of brain imaging research
should be to identify the location of signals.While there is disagreement
as to whether or not the effect size should be of primary interest (our
viewwas described above; for a spectrum of opinions see the responses
to issue 5 in Kriegeskorte et al., 2010) the claim that localization is the
only important goal draws attention to the thorny statistical challenges
associated with localization.We believe that improvedmethods to deal
with these localization challenges will prove to be a most useful meth-
odological development in the field in the coming future.

To see why this matter is so thorny, imagine a particular task con-
trast reveals a cluster centered at MNI coordinates (−12,32,38); in
another experiment, suppose the same task contrast activated a clus-
ter centered at coordinates (−10, 30, 35). Does the second result con-
stitute a successful replication of the first?

In practice, this question is usually answered by drawing on as-
sumptions about which anatomical features of the location are rele-
vant (and opinions about this matter will typically vary across
researchers). There are no good alternatives to such subjective evalu-
ation because appropriate statistical techniques to answer this ques-
tion do not exist. To progress beyond this unsatisfactory state of
affairs, we need statistical methods that can answer two critical
questions.

First: How do we characterize the activation in a given subject?
Common practice includes reporting the peak/center voxel, and dis-
playing a statistically thresholded image; however, this belies the
fact that task activations tend not to be punctate sources, but are rath-
er diffuse regions of varying signal intensity — and with sufficient

1 Lieberman and Cunningham (2009) acknowledged these errors, but rather than
re-analyzing prior data, they argued that neuroimaging research might be better off
if researchers were less concerned about false alarms than they currently are!
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statistical power, more andmore areas of the brain will be revealed to
be significantly activated by a task (Yarkoni and Braver, 2010). So the
activation of the brain to a task is not a thresholded region, but a con-
tinuous map. How, then, can we summarize these activation maps in
a useful manner without throwing out a vast amount of important
information?

Second: Once we find a useful summary of activation maps, how
do we characterize the variability of these summaries across subjects
while respecting the variability in anatomy and the function-to-
anatomy mapping across subjects.

Both of these challenges reveal unanswered questions in spatial
statistics, and unfortunately answers to both are required to properly
determine whether one task activation replicates another, or to ad-
dress a host of related, fundamental questions about the neural
bases of task-specific processes. Some initial attempts have been
made to address some of these challenges (Fedorenko et al., 2011;
Xu et al., 2009; Yarkoni et al., 2011), but much remains to be done.
We are optimistic that with input from the statistical community,
useful methods for addressing these problems will be developed.

In closing: Massively multivariate data with a low signal-to-noise
ratio is inherently difficult to analyze and invites mischaracterization.
Substantial progress has already been made in developing techniques
for overcoming some of these difficulties. Although the recent rounds
of criticism of dubious practices in fMRI data analysis has been
viewed by some as a bit embarrassing to the field of cognitive neuro-
science, we are confident it has already benefited the scientific integ-
rity of the field and in all likelihood, further improvements are to be
expected.
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