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Suspiciously high correlations in brain imaging research 

Edward Vul [evul@ucsd.edu]; Harold Pashler [hpashler@ucsd.edu]; UCSD Psychology 

In early 2005 a speaker visiting our department reported that blood oxygen-level dependent 

(BOLD) activity in a small region of the brain accounted for the great majority of the variance 

in speed with which subjects walk out of the experiment several hours later (this finding was 

never published, as far as we know).  This result struck us as puzzling, to say the least. It made 

us wonder about various apparent implications, for example: Are walking speeds really so 

reliable that most of their variability can be predicted?  Does a single, localized cortical region 

chiefly determine walking speeds?  Are walking speeds largely predetermined hours in 

advance? These implications all struck us as far-fetched.  Browsing the literature, we were 

surprised to find that similarly high correlations between fMRI data and individual differences 

in social behavior and other individual differences were not at all uncommon in the literature. 

And yet, when we tried to estimate the maximum plausible population correlation between 

fMRI measures and social behavior based on psychometric considerations, it seemed that the 

upper bound should be around 0.75 (given a generous estimate of the reliability of the 

behavioral and brain measures). And yet, correlations exceeding this upper bound were very 

common (Figure 1).  Our efforts to figure out what was amiss to yield such high correlations led 

to a 2009 article--initially titled "Voodoo Correlations in Social Neuroscience"--which 

generated far more interest and controversy than we had remotely anticipated.  	

The source of these suspicious correlations turned out to be a fairly simple selection bias, 

namely, a selective analysis procedure that effectively reports the highest observed sample 

correlations chosen out of a very large set of candidates.  The problem with such circular 
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selective analyses – namely, that they provide grossly inflated estimates of effect size -- were 

described as far back as 1950 by Edward Cureton in the context of practitioners using the same 

data to develop and validate psychological tests.  Cureton too had been led to a cheeky label for 

the procedures he was criticizing, titling his paper “Validity, Reliability, and Baloney.”  By 

2008, this analysis error had become prevalent not only in neuroimaging studies of individual 

differences in emotion, personality, and social cognition (Vul et al. 2009a), but seemed to occur 

in many other guises (Vul & Kanwisher, 2010), and was estimated to have played some role in 

40-50% of high profile fMRI papers regardless if their substantive focus (Kriegeskorte et al. 

2009).	

	
Figure 1.	The	set	of	correlations	surveyed	by	Vul	et	al.	(2009),	showing	how	the	absolute	correlation	(y)	
varies	with	sample	size	of	the	study	(x),	along	with	the	marginal	histograms	of	both	sample	size	and	absolute	
correlation.		Individual	observations	are	color-coded	by	whether	a	request	for	information	from	the	authors	
revealed	the	analysis	to	be	independent	(black),	non-independent	(red),	or	if	no	response	was	obtained	
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(blue).		The	vast	majority	of	the	surprisingly	high	correlations	(r>0.7)	were	obtained	by	a	non-independent	
analysis	procedure	that	is	guaranteed	to	inflate	effect	size,	especially	when	sample	sizes	are	small.	

The fallout of the papers describing the prevalence and gravity of the non-independence 

/ circularity error in fMRI unearthed a great many more surprisingly common errors in fMRI 

analysis and interpretation.  We are pleased to say that there has been general endorsement by 

statisticians, as well as by fMRI practitioners and consumers, of our suggestions for how to 

avoid committing such errors, misrepresenting results, and misinterpreting the data 

(Kriegeskorte et al. 2010). Indeed, the most common variants of these errors seem much 

reduced in prevalence.  However, these errors arose in the context of the great difficulty of 

whole-brain, across-subject fMRI, and as this difficulty is not easily addressed, such problems 

will continue to arise in various guises.	

1. Challenges of fMRI analysis 

fMRI analysis is hard, and whole-brain across-subject fMRI is harder.  All fMRI is hard 

because the signal-to-noise ratio for a particular task-contrast in a single subject tends to be 

quite low (e.g., Kong et al. 2006). This problem is exacerbated by the fact that the noise has 

non-homogenous magnitude and complicated correlational structure over space and time due to 

the underlying physiology and physics of measurement (Lund et al. 2006).  Whole-brain fMRI 

is especially hard because the signal is presumed to be carried by a small subset of the 

thousands of voxels that are measured for a given subject; thus the analysis aims to not only 

find a small signal bobbing up and down in a maelstrom of structured noise, but also to 

characterize its properties.  Across-subject fMRI is harder still because there are large individual 

differences across subjects in basic neuroanatomy, as well as in the mapping of task-relevant 

signals to that varying neuroanatomy (Fedorenko & Kanwisher, 2009); thus, the analysis must 

find which locations in the 3D grid of measurements of one subject correspond to functionally 
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matched locations in every other subject. Moreover, across-subject fMRI analysis must grapple 

with variation in signal across subjects, under severe limitations to the number of subjects that 

can be included in an experiment given the high cost of using a scanner.  In short, whole-brain, 

across-subject fMRI experiments face a great many statistical and practical challenges that have 

rendered single whole-brain across-subject fMRI studies in some way a microcosm of the larger 

replication crisis in psychology.	

A single whole-brain, across-subject fMRI experiment is a microcosm of the larger 

replication crisis in psychology because a single massively multivariate analysis is analogous to 

a whole field carrying out many experiments.  Publication bias (Rosenthal, 1979) inflates the 

effect sizes in a given field by filtering many executed studies to get just those that passed a 

significance threshold.  A non-independent analysis in fMRI operates the same way: Effect 

sizes are inflated by filtering many candidate voxels for those that yielded a significant signal. 

Similarly, given the generally very low power of fMRI studies (Yarkoni, 2009; Button et al, 

2013), the set of significant findings is likely to include many false positives, as is the case 

when considering the set of published findings in a whole field (Ioannides, 2005).  The 

complexity and variability of fMRI analysis offers researchers many choices during the analysis 

pipeline (Carp, 2012).  Insofar as these choices are made in light of the data, the results may be 

"p-hacked" (Simmons et al. 2011) to a large degree simply by virtue of data-driven selection of 

analysis procedures (i.e., the "garden-of-forking paths"; Gelman, 2014). Finally, given the 

expense of fMRI experiments, there are few direct replications, so “conceptual”	replication is 

instead the norm, potentially worsening publication bias for reasons described by Pashler & 

Harris (2012).  More importantly, even a replication of a specific task-contrast in a particular 

brain region is necessarily only "conceptual" because exact replications at specific sets of 



5	

 

coordinates cannot reasonably be expected.  Also, due to a lack of general methods in spatial 

statistics to characterize the location and uncertainty of an activated region, there is no way to 

formally determine whether two locations are “the same”, thus whether two activations are 

replications of one another is often a subjective judgment by the researchers.   Thus, many of 

the common problems underlying the replicability crisis across the set of findings in a whole 

field arise within the context of any given whole-brain across-subject fMRI experiment.	

2. Non-independence / circularity 

(For a brief introduction to fMRI analysis see the Appendix.)	

The central challenge of whole-brain fMRI parallels the challenge faced by genetics and other 

domains in which the candidate pool of variables far exceeds the number of independent 

measurements.  fMRI research confronts  the twin challenge of both finding which of those 

measured variables actually carries task relevant signals, and characterizing that signal.  The 

non-independence, or circularity, error arises when researchers try to achieve both of these goals 

using the same set of data.   	

The prototypical non-independent correlation we uncovered in 2009 was obtained as follows. A 

particular task contrast (say, BOLD response to happy faces vs sad faces) is calculated in each 

voxel for each subject.  Each voxel's task contrast is correlated across subjects with some other 

measure on that subject (say, scores on a standard behavioral depression measure ).  This 

analysis yields one correlation per voxel in the analysis –	on the order of thousands of 

correlations.  A subset of the thousands of correlations is selected based on a search for the 
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cluster of voxels showing the greatest response1.  The average, or peak, correlation from this 

cluster is reported as the effect size of the correlation.	

This procedure is guaranteed to overestimate the size of the across-subject correlation in the 

population.  The magnitude of this overestimation will depend on the sample size (larger 

samples yield less overestimation), the true underlying population correlation (larger true 

correlations are less overestimated), and the stringency of the statistical threshold used to select 

voxels (ironically, more stringent multiple comparisons correction yields greater 

overestimation).	

																																																								

1		Typically,	a	cluster-size	corrected	statistical	test	is	used,	identifying	groups	of	adjacent	voxels	that	all	have	
high	enough	sample	correlations	to	pass	a	particular	significance	threshold,	and	are	plentiful	enough	to	pass	
a	cluster-size	threshold.	
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Figure 2.	Illustration	of	the	non-independence	error.		The	sampling	distribution	of	the	sample	correlation	
varies	with	the	sample	size	(columns)	and	the	true	underlying	population	correlation	(rows;	illustrated	as	a	
solid	black	dot	on	each	histogram).	A	statistical	significance	threshold	(here	we	use	the	common	cluster-
height	threshold	of	p<0.001),	however,	yields	a	constant	critical	correlation	value	for	every	sample	size	
(black	lines).		The	average	sample	correlation	that	passes	the	significance	threshold	(open	circles)	are	much	
higher	than	their	true	population	correlations	unless	the	statistical	power	of	the	threshold	is	high	(meaning	
that	most	of	the	sampling	distribution	is	larger	than	the	threshold,	as	in	the	case	of	n=64,	r=0.75.		
Consequently,	the	selected	sample	correlations	are	very	likely	to	be	much	higher	than	the	true	populations	
correlations.	

To obtain  an intuition for this bias, consider the sampling distribution of the sample correlation 

(Figure 2).  A sample correlation will differ from the true correlation due to sampling variability 

and noise in the measurements, with smaller sample sizes yielding more variable sample 

correlations. The statistical threshold used for selection imposes a minimum sample correlation: 

To be significant at a particular p<α	threshold, the sample correlation must exceed some value.  
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Consequently, the smallest sample correlation that would pass a given significance threshold is 

constant, regardless of the true correlation.  This means that if the statistical power is low 

(meaning that a small fraction of the sample distribution is above the threshold), the average 

sample correlation that passes a given significance threshold is uniformly high, regardless of the 

underlying population correlation.	

	
Figure 3.	The	mechanism	of	bias	in	non-independent	analyses.		Even	in	the	presence	of	non-zero	true	
correlations	(x	axis),	the	sample	correlations	(y)	selected	as	exceeding	a	particular	threshold	are	
systematically	overestimated.		With	a	sample	size	of	16,	the	minimum	sample	correlation	to	pass	a	common	
p<0.001	whole-brain	threshold	is	quite	large,	ensuring	that	all	observed	correlations	will	be	large,	even	if	
their	true	population	correlations	are	small.	

This statistical thresholding of sample correlations means that the set of estimated correlation 

coefficients from such a circular analysis will systematically overestimate the population 

correlations in those voxels.  Figure 3 shows the true underlying correlations as well as the 

observed correlations in a set of simulated voxels that passed a p<0.001 significance threshold.  

Nearly all observed correlations in this case are higher than their true underlying correlations.	
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In some non-independent whole-brain correlation studies, instead of reporting the average 

correlation of a detected cluster, the investigators instead report the "peak voxel" from that 

cluster.  In this case, the exaggeration is even worse.  Figure 4 shows the expected maximum 

correlation identified from different set sizes for different underlying population correlations.  If 

the whole-brain across-subject correlation analysis with 16 subjects considers 1000 possible 

correlations (considerably less than the number of voxels in a whole-brain analysis), the peak 

correlation coefficient is expected to be about 0.75, even if the true correlation is actually 0.	

	
Figure 4.	What	is	the	expected	value	of	the	peak	correlation	reported	from	an	analysis?	The	expected	
maximum	correlation	(y)	increases	with	the	number	of	independent	brain	regions	it	is	chosen	from	(x),	
yielding	large	overestimates	of	the	true	correlation,	regardless	of	its	value	(colors).		Lines	reflect	the	
expectation,	while	shaded	regions	show	the	90%	interval.		These	calculations	used	a	sample	size	of	16	
subjects.		

Furthermore, multiple comparisons correction, which is designed to reduce the rate of false 

positives in the statistical test by imposing a more stringent statistical threshold for significance, 

will only increase the overestimation bias (Figure 5).  Although it may at first seem 
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counterintuitive that more stringent correction for multiple comparisons yields greater 

overestimation in a circular analysis, it will make sense when considering Figure 2. Greater 

correction for multiple comparisons increases the correlation threshold: with 16 subjects, 

p<0.001 (a correction for only 50 voxels) requires a correlation of 0.74, while p<0.0001 (a 

correction for 500 voxels) requires a correlation of 0.82.  Thus, greater correction for multiple 

comparisons increases the minimum sample correlation needed to pass the statistical threshold, 

thereby exacerbating the circular overestimation bias.  Of course, the reader should not interpret 

this point as advocacy for inadequate multiple comparisons correction. Our intent is to illustrate 

that multiple comparisons correction, although  necessary to ensure that the signals are not 

merely noise, also increases the overestimation bias in non-independent analyses. Indeed, the 

worst combination is a non-independent analysis combined with inadequate multiple 

comparisons correction: Such a procedure will typically produce high correlations out of pure 

noise! (Vul et al., 2009b).	
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Figure 5.	How	does	multiple	comparisons	correction	influence	the	bias	from	non-independent	analyses?		We	
simulated	how	the	absolute	selected	sample	correlation	(y)	relates	to	the	absolute	true	underlying	
correlation	(x)	for	different	numbers	of	subjects	(8,	16,	and	32),	as	we	varied	the	statistical	threshold	
between	(p<100,	to	p<10-5;	with	larger	circles	indicating	more	stringent	thresholds).		For	each	threshold	we	
show	both	the	average,	and	the	90%	interval	of	selected	and	true	correlations.		Bias	(discrepancy	between	
selected	and	true	correlation	–	y-distance	above	the	diagonal	identity	line)	is	smaller	under	larger	sample	
sizes,	but	increases	systematically	as	the	statistical	threshold	becomes	more	conservative.		(The	distribution	
of	population	correlations	is	pictured	above	in	gray;	this	distribution	captures	the	common	assumption	that	
there	are	many	small	correlations,	and	few	large	ones	in	the	brain;	formally,	this	is	obtained	via	a	truncated	
normal	distribution	with	a	mean	of	0	and	a	standard	deviation	of	1/3	on	the	Fisher	z’	transforms	of	the	
population	correlations).		

As one might surmise from Figure 2, the magnitude of overestimation depends on the 

underlying population correlation and the sample size -- effectively the power of the statistical 

threshold used to select voxels.  Figure 6 shows how the non-independent correlation estimate 

changes as a function of power.  When power is high (>0.8) estimated correlations and 

coefficients of determination are within 10% of the true population values, so there is nearly 

zero bias from selective analyses.  When power is low (0.2-0.4) correlations are misestimated 

by 14% to 50% (roughly comparable to the 25%-53% overestimation reported by Poldrack et 
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al., 2010); this amounts to estimating a correlation of 0.4 to be 0.6, and believing that more than 

twice as much variance can be accounted for than is actually the case.  Of course, the most 

drastic overestimation happens when power is very low (e.g., below 0.2): in those cases 

researchers might find that they can account for nearly all the variance, when in reality the 

coefficient of determination (the amount of variance accounted for) is just a few percent.  So 

overestimation is catastrophic with power below 0.2, non-existent when power is larger than 

0.8, and considerable -- but perhaps tolerable -- with power as low as 0.5.  What kind of power 

do typical across-subject correlation studies achieve?  We explore this issue in a later section, 

but as a teaser, consider that to achieve power of 50% when the population correlation is a 

respectable 0.5, an appropriately corrected whole-brain correlation experiment with just 100 

independent voxels (far fewer than a real whole-brain analysis) would need to consist of  44 

subjects -- more than was used in any of the studies in our surveyed sample of suspicious 

correlations.	

Thus, we see the confluence of factors required to produce a grossly overestimated correlation.  

An analysis must consider many possible correlation measures (e.g., a correlation per voxel in a 

whole-brain analysis), choose a subset based on a criterion of them being sufficiently high (e.g., 

passing a statistical threshold), and the statistical threshold used to select those correlations must 

have low power with respect to the true underlying correlation.  Ironically, because multiple 

comparisons correction decreases power, it exacerbates the overestimation.  	
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Figure 6.	The	influence	of	statistical	power	on	overestimation	from	non-independent	analyses.		(Left)	
Average	selected	correlation	(x)	under	different	true	population	correlations	(y);	each	point	represents	a	
particular	sample	size,	with	the	color	corresponding	to	the	statistical	power	of	a	p<0.001	threshold	with	that	
sample	size	and	true	population	correlation.		Although	the	relationship	is	not	numerically	uniform	across	
population	correlations,	in	all	cases	less	power	means	greater	overestimation.		(Middle)	Magnitude	of	
overestimation	of	the	coefficient	of	determination	(r2):	the	difference	between	the	selected	sample	r2	and	the	
population	ρ2	decreases	with	the	power	of	the	test.		(Right)	Collapsing	over	true	population	correlations,	
statistical	power	(x)	seems	to	impose	an	upper	bound	on	the	magnitude	of	overestimation	such	that	the	
maximum	observed	overestimate	decreases	as	power	increases.	

2.1 Avoiding the non-independence error 

It is critical to note that not all analyses that yield correlation coefficients or other effect size 

estimates from fMRI data arise from circular analyses.  Indeed, it is quite simple to avoid the 

non-independence error; that is, to avoid estimating an effect size from a sample selected from a 

large set because it had a large effect size.  There are three classes of strategies to avoid non-

independence.  	

Perhaps the best tactic is to avoid whole-brain across-subject analyses altogether.  This is 

achieved by collapsing the massively multivariate brain measurements of each subject into one, 

or just a few, summary statistics of the signal for that subject.  This is often accomplished by 

defining within-subject regions of interest, and estimating the task activation therein; thus the 

across-subject analysis is carried out on just the aggregate signal within a particular region, and 

thereby avoids the complexities of analyzing thousands of candidate measurements.  Such a 

strategy has a further advantage of allowing within-subject designs, such as looking for 
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correlations across trials, rather than correlations across individuals (thus gaining considerable 

power by avoiding across-subject variability).  	

Another strategy for avoiding non-independence is to use an independent source of data to 

select across-subject regions of interest, and limit the critical across-subject correlation analysis 

only to the average signal in those regions (again, avoiding a whole-brain search for significant 

correlations).  This can be achieved by using purely anatomical definitions of regions (e.g., the 

anatomically-defined amygdala), or using independent across-subject contrasts to define those 

regions (e.g., finding a region that responds more to happy than sad faces across subjects).  

After that, one would aggregate some signal within that region for each subject, and estimate its 

correlation across subjects.  Again, the critical part here is that the across-subject analysis of 

interest is not carried out on every voxel.	

The last strategy that one might adopt is cross-validation: using one set of subjects to find 

clusters in a whole-brain analysis that are correlated with some measure of interest, and then 

using a different set of subjects to estimate the strength of the correlation in that identified 

cluster.  Critically, this strategy again avoids using the same data to identify regions in a voxel-

by-voxel whole-brain analysis, but in contrast to the first two strategies, it also identifies voxels 

based on the signal of interest.  Although  this approach is quite appealing (and indeed, we 

advocated it in Vul et al., 2009), it may not be generally advisable given the low power of most 

whole-brain across-subject correlations, as the consequence would be accurately estimating the 

magnitude of very few strongest correlations, while missing the vast majority of others.	

3. Associated problems that emerged in the fallout 
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Our paper spurred enthusiasm for critical analysis of fMRI methods, both in the many direct 

commentaries that were published alongside it, and additional papers that emerged thereafter.  

Many of these papers uncovered other prevalent problems, some of which interact in vicious 

ways with the non-independence error.	

3.1 Inadequate multiple comparisons correction 

Because there are thousands of voxels in whole-brain fMRI, identifying which voxels carry 

scientifically relevant signals introduces a massive multiple comparisons problem.  This 

problem is not often adequately addressed, with many papers reporting uncorrected whole-brain 

analyses thresholded at p<0.001.  Figure 7 shows the expected probability of falsely detecting a 

significant signal in a whole-brain analysis thresholded at p<0.001: if a whole-brain analysis is 

carried out on ~1000 independent voxels, this uncorrected procedure will yield a significant 

false positive more than 60% of the time.	

	
Figure 7.	The	importance	of	adequate	multiple	comparisons	correction.		As	the	number	of	independent	brain	
regions	in	a	whole-brain	analysis	increases	(x),	the	probability	of	falsely	detecting	a	correlation	(or	any	other	
signal)	increases	if	the	statistical	threshold	is	held	constant.		The	common	p<0.001	threshold	is	sufficient	to	
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correct	for	50	multiple	comparisons	to	the	α=0.05	level,	but	will	yield	more	than	60%	false	positives	if	there	
are	1000	voxels	in	the	whole-brain	analysis.	

 

If we consider not just the magnitudes, but the significance, of the correlations in our original 

sample, we find that although these correlations are surprisingly high, they are not highly 

significant, given the sample sizes with which they were observed (Figure 8).  Such p values are 

to be expected of independent correlations (that need not correct for whole-brain multiple 

comparisons of the correlation), but are potentially worrisome for those correlations that were 

estimated from whole-brain analyses, as they may not have been adequately corrected.  	

Many of the whole-brain correlations were corrected using "cluster-size correction." Instead of 

correcting for multiple comparisons via classical Bonferroni (or more contemporary false 

discovery rate [FDR] procedures; Benjamin's & Hochberg, 2001) correction of individual 

voxels, fMRI analysis often aims to exploit presumed spatial structure of the signals to increase 

power.  In cluster-size correction, a contiguous group of potentially signal-carrying voxels (a 

cluster) is deemed to be significant by determining what combination of cluster size and 

measured signal strength is unlikely to arise by chance. Thus, one might achieve an adequate 

level of correction in a particular 128x128x1 voxel image (per-voxel p<0.000001) by jointly 

thresholding signal strength at p<0.005 and cluster size at k>10; which should yield greater 

power than thresholding each voxel at p<0.000001 (Forman et al., 1995).  The null hypothesis 

distribution of size-strength cluster combinations is analytically intractable, so determining an 

adequate correction requires Monte Carlo simulations.  In practice, however, many researchers 

seem to forego that analysis in favor of some "standard" cluster-size correction.  	
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Adding to the problem, many of the "standard" correction thresholds seem to offer inadequate 

multiple comparisons correction. In a now-classic article, Bennett et al. (2010) showed that a 

common "standard" cluster-size correction (p<=0.001, k>=10) can detect task-related activity in 

a dead salmon.  Needless to say, such activity is entirely spurious. Moreover, in a separate paper 

they found about 30% of fMRI papers published in 2008 used this inadequate correction 

threshold (Bennett et al. 2009). It is exceedingly unlikely that all of those papers arrived at the 

same threshold in their particular setting using Monte Carlo simulations. More likely, they 

simply applied what they thought was a “standard”	size-strength threshold indiscriminately 

across settings.  This "standard" correction generally seems to have been borrowed from 

Forman et al. (1995), who showed that such thresholds are adequate for a 2D 128x128 slice 

with particular spatial smoothing.  However, these thresholds yield much higher false positive 

rates when applied to 3D volumes. The reason is that each voxel has more neighbors in three 

dimensions than two, thus yielding greater rates of random contiguity (i.e., false positives 

appearing in adjacent voxels). The threshold also likely underestimates the impact of 

smoothing, which induces a greater correlation between adjacent voxels, again increasing the 

rate of random contiguity. Consequently, this correction threshold is usually (but not always) far 

too liberal when applied to whole-brain fMRI signals, and yields considerably higher rates of 

false positives than researchers report (Bennett, 2009). 	
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Figure 8.	The	correlations	surveyed	in	Vul	et	al	(2009),	plotted	as	a	function	of	the	number	of	subjects,	and	
the	(absolute)	reported	correlation.		Color	corresponds	to	the	(uncorrected)	p	value	of	the	correlation,	and	
lines	indicate	the	critical	correlation	values	at	different	α	levels.		While	the	reported	correlations	are	large,	
they	are	not	very	significant,	especially	when	considering	that	many	of	them	arose	from	whole-brain	
analyses	that	would	require	multiple	comparisons	correction.	

The common practices of arbitrarily choosing among different correction procedures (e.g., 

family-wise error, false-discovery rate, cluster-size correction), adopting inappropriate 

“standard”	thresholds, and arbitrarily adjusting free parameters (e.g., trading off signal and size 

thresholds) offer many “researcher degrees of freedom”	(Simmons et al., 2011) that make many 

reported p-values uninterpretable.  Thus, although it is impossible to assess which of the whole-

brain correlations in our sample were adequately corrected, and which adopted an inadequate 

heuristic procedure, it is likely that at least some of those thresholding at p<0.005 or p<0.001 

and k>10 were doing so inappropriately.	

Multiple comparisons correction interacts in two vicious ways with non-independent analyses.  

First, as we showed in the previous section, more stringent multiple comparisons correction 

during a circular analysis actually exacerbates the effect size overestimation.  Second, non-

independent analyses with inadequate multiple comparisons correction can produce large, 
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compelling effects out of pure noise because multiple comparisons correction need not be very 

stringent to produce a grossly biased effect size estimate (as shown in Figure 2: p<0.001 is more 

than sufficient given a small sample size).  A threshold of p<0.001 means that the smallest 

correlation deemed significant with a sample size of 10 would be 0.87, which is very high 

indeed; however, if p<0.001 and its associated cluster size threshold are inadequate to correct 

for the whole-brain analysis, then a non-independent analysis can produce such a high r=0.87 

correlation quite reliably, even if the population correlation is 0.  Together, there is no way to 

avoid the problems associated with circular analyses: stringent multiple comparisons correction 

will exacerbate the bias of effect size overestimation, whereas inadequate multiple comparisons 

correction is likely to produce impressively large effect sizes from pure noise.	

3.2 Low power 

After our initial paper, many pointed out that low power is not only a major problem underlying 

the suspiciously high correlations we reported (Yarkoni, 2009; Yarkoni & Braver, 2010), but is 

more generally prevalent in neuroscience (Button et al, 2013).  As we showed in Figure 6, 

statistical power is critical to the magnitude of the bias introduced by non-independent analyses.  

With high power, the bias is virtually zero, whereas with very low power the bias may account 

for nearly the entire observed effect size.  How much power did the correlational studies we 

surveyed have for a whole-brain analysis? And how large of a sample would be necessary to 

detect a plausible correlation in a whole-brain across-subject correlation study?	
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Figure 9.	Statistical	power	(y)	for	Bonferroni	corrected	correlation	tests	as	a	function	of	population	
correlation	(panels),	sample	size	(lines),	and	the	number	of	independent	correlations	in	the	analysis	(x).		A	
small	population	correlation	(ρ=0.25;	left)	yields	low	power	even	with	few	independent	correlations.		In	
contrast	large	correlations	(ρ=0.75;	right)	can	be	tested	with	high	power	with	just	16	subjects,	provided	that	
the	analysis	considers	only	one	correlation;	however,	a	whole-brain	analysis	with	1000	correlations	requires	
twice	as	many	subjects	to	achieve	the	same	level	of	power.	A	test	for	an	optimistic,	but	plausible	population	
correlation	(ρ=0.5;	middle)	requires	nearly	100	subjects	to	achieve	a	high	level	of	power	in	a	whole-brain	
analysis.	

To assess power, we need to assume some population effect size – here the population 

correlation between an fMRI signal and a social/personality/behavioral measure.  Given the 

reliability of fMRI signals and social/personality measures, we previously estimated the 

maximum theoretically possible population correlation to be 0.75 (Vul et al. 2009), and this 

figure assumes (rather absurdly, we would think) that were it not for measurement variability, 

this particular fMRI signal would account for 100% of the variance in this behavioral measure.  

A population correlation of 0.5 is also optimistic, but more plausible, assuming that 45% of the 

true variance in the behavioral measure could be explained by the noise-free fMRI signal.  

Finally, a population correlation of 0.25 may seem pessimistic, but strikes us as considerably 

more likely, as it assumes that a specific fMRI signal accounts for somewhat less than 10% of 

variability in behavior.  Because without access to the original data we cannot assess statistical 

power of these published studies using permutation-based cluster-size correction, we instead 

consider simple Bonferroni correction, which seems to show well-calibrated correction under 
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low to moderate amounts of data smoothness (Nichols & Hayasaka, 2003).  (For comparable 

analyses yielding similar results using FDR correction, see Appendix B).	

	
Figure 10.	(a)	The	histogram	of	sample	sizes	from	the	studies	surveyed	in	Vul	et	al.	(2009),	color	coded	to	
match	the	colors	in	Figure	9.		(b)	Histograms	of	the	power	these	studies	will	have	to	detect	a	population	
correlation	of	0.5	or	0.75	either	with	a	single	measured	correlation,	or	with	a	1000-voxel	whole-brain	
analysis.	The	sample	sizes	used	in	these	studies	offer	a	lot	of	power	for	detecting	an	implausibly	large	
population	correlation	in	a	univariate	analysis	(ρ=0.75,	1	region),	but	all	have	less	than	20%	power	to	detect	
a	plausible	(ρ=0.5)	correlation	in	a	whole-brain	analysis.		

Figure 9 shows the power we can expect for detecting a whole-brain, across-subject correlation 

varying in the number of independent brain regions, the number of subjects (sample size), and 

the underlying population correlation.  When the true correlation is a modest 0.25, multiple 

comparisons correction renders sample sizes of even 100 grossly underpowered when there are 

more than 100 independent voxels in the whole-brain analysis. If the population correlation is 

0.75 (the maximum theoretically possible), then a correlation analysis on a whole-brain analysis 

of 1000 voxels could achieve power of 80% with only 30 subjects.  With a respectable (and 

more realistic) population correlation of 0.5 in a 1000-voxel brain, 30 subjects buys us only 

10% power, and we would need 59 subjects just to get our power to a hardly impressive level of 

50%.  Considering that the largest sample size we found in our survey of published brain-

behavior correlations was 38, with the median at 15, it seems that as a whole, whole-brain 

across-subject correlation studies are generally severely underpowered.	
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Figure 11.	Sample	size	required	(y)	to	achieve	a	certain	level	of	power	(x)	as	a	function	of	the	population	
correlation	(panels),	and	the	number	of	Bonferroni	corrected	comparisons	(brain	regions).		A	realistically	
small	population	correlation	(ρ=0.25)	will	require	hundreds	of	subjects	in	a	whole-brain	analysis	(e.g.,	1000	
voxels)	to	achieve	adequate	power.		However,	even	optimistic	but	plausible	population	correlations	(ρ=0.5)	
require	many	more	subjects	than	are	commonly	run	in	whole-brain	across-subject	correlation	studies.	

What is the expected power of the whole-brain correlation studies in the literature?  Figure 10b 

shows a histogram of the power one might expect from the studies in our sample.  Nearly all of 

them had adequate sample sizes to achieve 80% power for the theoretically maximal population 

correlation of 0.75, if they considered only a single measurement of the brain.  However, a 

1000-voxel whole-brain analysis with the same population correlation would yield less than 

50% power for 87% of the studies, and less than 20% power for 54% of them.  If we consider a 

more realistic population correlation of 0.5, all of the studies have less than 20% power for a 

whole-brain analysis, and 91% have power less than 5%.  These are quite startling numbers: we 

showed in Figure 6 that overestimation from circular analyses is expected to be worrisome even 

with less than 50% power, and to be catastrophically bad with power below 20%; here it seems 

that the vast majority of studies that undertake whole-brain across-subject correlation analyses 

do so with less than 5% power for plausible effect sizes.	



23	

 

How large of a sample would be necessary to achieve adequate power?  Figure 12 shows the 

sample size requirements for whole-brain analyses with different numbers of voxels.  With a 

plausible population correlation of 0.5, a 1000-voxel whole-brain analysis would require 83 

subjects to achieve 80% power.  A sample size of 83 is five times greater than the average used 

in the studies we surveyed: collecting this much data in an fMRI experiment is an enormous 

expense that is not attempted by any except a few major collaborative networks.  	

In short, our exploration of power suggests that across-subject whole-brain correlation 

experiments are generally impractical: without adequate multiple comparisons correction they 

will have false positive rates approaching 100%, with adequate multiple comparisons correction 

they require 5 times as many subjects than what the typical lab currently utilizes.  With the 

sample sizes currently used in the literature, such whole-brain correlation studies seem to have 

less than 5% power, meaning that if only half of the hypotheses tested in these studies are truly 

null (i.e., because there is no monotonic relationship between brain activity measured at the 

fMRI scale and individual differences), then more than half of the reported significant findings 

will be false positives (Pashler & Harris, 2012). This bizarre “winners’ curse” outcome arises 

from the small fraction of voxels that will have a true signal, even when one is present: with so 

many candidate voxels in a whole-brain analysis, even 5% false positives will outnumber 

correct detections of the (generally sparse) true effects.	

4. Conclusions 

In our original paper, we reported that many correlations between individual differences in 

social and personality measures and brain activity measured by fMRI suffer from a "non-

independence" error: They rely on a procedure that effectively picks out the largest of thousands 
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of correlations, and report those high sample correlations as estimates of the effect size (Vul et 

al, 2009a).  This procedure is biased in that it is guaranteed to yield correlation estimates higher 

than the population correlation, just as publication bias (Rosenthal, 1979) will tend to yield 

inflated estimates of effect sizes across the published literature (Ioannidis, 2008).  Thus, we 

implored the original authors to reanalyze their data with cross-validation procedures to obtain 

unbiased estimates and correct the literature. Although Poldrack and Mumford (2009) 

reanalyzed their own, analogous, experiment to estimate the magnitude of overestimation, as far 

as we know, none of the papers we reviewed were reanalyzed with unbiased methods.   

It initially seemed to us that none of the authors carried out these reanalyses due to obstinacy 

and unwillingness to put their own “discoveries” at risk. However, our current analysis of power 

in whole-brain across-subject correlation studies puts their recalcitrance in a slightly more 

charitable light (motives aside): cross-validation, we now suspect, would rarely have 

surmounted the inherent problems with these severely underpowered datasets. Even using all of 

their subjects, these studies would probably have only 5% power for detecting plausible 

correlations; reducing this sample size further in a cross-validation would make the false-

positive rate exceed the true positive rate, rendering any attempts at cross-validation futile.	

Thus, we are now inclined to change our suggestions for how to avoid non-independence: cross-

validation is clearly impractical for whole-brain across-subject correlation studies.  Moreover, it 

seems that whole-brain across-subject correlation studies in general are impracticable, as they 

require sample sizes that are five times larger than typically used in fMRI experiments, likely 

financially impossible for all but the most well-funded research enterprises.  So, unless 

researchers undertake enormous studies with adequate sample sizes, we are revising our 

suggestions: the best way to avoid non-independent effect size estimates, and false positive rates 
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that are comparable to true positive rates, is to avoid whole-brain across-subject correlation 

studies altogether. Instead, researchers should opt for within-subject region of interest 

approaches that obtain just a few signal estimates from each subject to avoid the many pitfalls 

of a voxel-by-voxel across-subject correlation.  

More generally, the future of replicable research in whole-brain fMRI localization studies 

would be brighter with much larger sample-sizes.  This will likely need to be achieved through 

multi-site consortia and/or comprehensive data-sharing and aggregation enterprises.  

Furthermore, to extract useful results from such datasets, there will need to be a concerted 

development of statistical methods for quantifying the variability and precision in localization 

estimates.  That development process should provide important new insights regarding basic 

questions about human brain function and its variability across individuals.
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Appendix A: A quick tour of fMRI analysis 

Individual analysis 

A	typical	neuroimaging	experiment	yields	massively	multivariate	time-series	data:	a	3D	
grid	of	about	10^5	“voxels”	each	measuring	the	amplitude	of	the	blood	oxygenation	level	
dependent	(BOLD)	signal	every	few	seconds	throughout	the	experiment.	Specifically,	
every	few	seconds	(typically	around	2s)	the	BOLD	signal	is	acquired	in	a	3D	volume	of	
space	that	encompasses	the	brain	of	the	participant.	This	image	volume	is	divided	up	into	
~10-30	"slices",	where	each	slice	is	a	square	grid	of	voxels	(commonly	64x64	or	128x128).		
Thus,	there	are	roughly	10^5	or	10^6	voxels	in	a	given	imaging	volume,	and	each	voxel	
gets	its	own	BOLD	measurement	at	every	acquisition.		The	resulting	data	are	4-
dimensional:	each	of	about	10^5	voxels	in	a	3D	grid	covering	the	imaging	volume	is	
associated	with	a	timeseries	of	BOLD	measurements	at	that	point	in	space.	

The	4-dimensional	BOLD	data	are	subject	to	assorted	signal	and	image-processing	
procedures	before	any	statistical	analysis	can	be	fruitfully	carried	out.		These	aim	to	align	
the	3D	grid	of	voxels	to	itself	over	time	and	to	anatomy	(either	that	of	the	specific	subject,	
or	a	group	average,	or	a	standard	brain),	to	remove	the	measurements	of	non-brain	
regions	(such	as	the	skull,	the	ventricles,	sometimes	the	white-matter),	and	to	reduce	the	
noise	by	filtering	and	smoothing	the	signals.	Although	there	is	considerable	innovation	
and	discussion	about	how	to	optimize	these	"pre-processing"	procedures	(Churchill	et	al.,	
2012),	and	some	worry	about	possible	errors	that	they	might	introduce	(Power	et	al,	
2012),	that	is	not	our	focus	here.	

After	pre-processing	of	BOLD	data,	it	is	analyzed	via	a	"massively	univariate"	regression	
analysis	to	account	for	the	BOLD	timeseries	in	each	voxel	in	terms	of	some	number	of	
time-varying	task	predictors.		The	timeseries	of	task-predictors	are	convolved	with	a	
"hemodynamic	response	function"	that	captures	the	dynamics	of	how	BOLD	signals	
respond	to	a	single	impulse.		The	resulting	task-predictor	time	series	are	combined	in	a	
multiple	regression	(sometimes	including	nuisance	predictors,	like	head-movement	
signals)	to	explain	the	BOLD	timeseries	for	each	voxel.		This	process	yields	a	set	of	
coefficients	for	each	voxel,	indicating	how	much	a	given	task-predictor	changes	the	BOLD	
activity	in	that	voxel.	

The	task-predictor	coefficients	are	typically	analyzed	via	linear	contrasts	to	identify	the	
extent	to	which	the	voxel	response	is	different	for	some	tasks	predictors	than	others;	thus	
isolating	the	differential	BOLD	activation	arising	from	a	particular	"task	contrast".		Via	this	
process,	the	researcher	collapses	the	timeseries	of	BOLD	measurements	at	each	voxel	into	
a	few	contrast	estimates,	yielding	one	estimate	per	voxel	per	contrast	of	interest.	For	
simplicity,	let’s	say	there	is	only	one	contrast	of	interest	in	question	(e.g.,	images	of	happy	
vs.	sad	faces),	this	yields	~10^5	contrast	estimates	for	a	given	subject	–	one	per	voxel.	

These	3D	grids	of	contrast	estimates	can	be	subjected	to	a	statistical	threshold	and	
displayed	as	“statistical	parametric	maps”	for	an	individual	subject,	indicating	the	
statistical	reliability	of	the	task	contrast	at	each	voxel	for	that	subject.		However,	typically,	
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the	aim	is	to	make	inferences	about	how	these	contrasts	behave	in	the	population,	so	from	
here	analysis	proceeds	to	the	group	stage	that	aggregates	these	linear	contrasts	across	
subjects	in	some	way.	

Within-subject region-of-interest vs. whole-brain analyses 

Here	we	must	distinguish	two	strategies	for	the	group	analysis:	the	within-subject	region	of	
interest	(Saxe	&	Kanwisher,	2006)	approach,	and	the	whole-brain	(Friston	et	al,	2006)	
approach.			

The	within-subject	region	of	interest	(ROI)	approach	aims	to	collapse	the	~10^5	contrast	
estimates	obtained	for	each	subject	(roughly	one	per	voxel)	into	a	few	averages	
corresponding	to	specific	areas	of	the	brain.		One	such	strategy	would	be	to	use	an	
"anatomical	localizer"	to	choose	a	region	of	the	brain	identifiable	from	anatomy	alone	(e.g.,	
the	amygdala),	pick	out	the	voxels	that	are	in	that	region,	and	aggregate	the	contrast	signal	
in	that	region.		This	would	yield	just	a	single	measure	of	task-contrast	per	person:	the	
contrast	of	the	mean	signal	in	the	amygdala.		An	alternate	region-of-interest	strategy	
common	in	visual	neuroscience	relies	on	"functional	localizers":	an	independent	set	of	
"localizer"	data	are	used	to	define	a	region	within	an	individual	(e.g.,	contrast	of	faces-
objects	would	yield	a	statistical	parametric	map	that	could	be	used	to	identify	the	fusiform	
face	area	in	each	subject,	Kanwisher	et	al,	1997),	then	the	contrast	of	interest	would	be	
averaged	across	all	voxels	within	that	functionally	defined	region.		Just	as	for	anatomical	
regions	of	interest,	averaging	task	contrasts	within	a	functionally	defined	region	will	yield	
just	a	single	contrast	estimate	per	subject	(e.g.,	the	contrast	of	the	mean	signal	in	the	
fusiform	face	area).		By	aggregating	data	within	each	subject	into	just	one	(or	a	few)	
measures,	the	region	of	interest	approach	avoids	the	statistical	complications	of	massively	
multivariate	data	analysis,	including	stringent	multiple	comparisons	correction	and	the	
non-independence	error	at	the	group	analysis	level.	

In	contrast	to	the	region	of	interest	approach,	the	whole-brain	analysis	does	not	collapse	
the	fMRI	task-contrasts	of	each	individual	into	a	few	summary	numbers	for	specific	
regions,	but	instead	aims	to	assess	how	contrasts	in	each	voxel	behave	across-subjects.		
This	means	that	the	whole-brain	approach	must	grapple	with	massively	multivariate	
voxel-by-voxel	analysis	at	the	group	level.	

Whole-brain, across-subject analysis 

At	the	group	analysis,	the	whole-brain	across-subject	study	assesses	how	the	task-contrast	
in	each	voxel	varies	across	subjects.		This	might	amount	to	assessing	whether	the	mean	
contrast	is	sufficiently	different	from	zero,	given	the	across-subject	reliability.		Or	this	
might	mean	assessing	whether	the	magnitude	of	the	task-contrast	correlates	with	some	
other	measure	that	varies	across	subjects	(such	as	a	personality	score,	behavioral	test	
performance,	or	walking	speed	after	the	fMRI	session).		In	either	case,	the	whole-brain	
analysis	now	has	~10^5	across-subject	statistical	tests	to	perform:	one	for	each	voxel.		
Given	the	pre-processing	(that	averages	signals	of	adjacent	voxels	to	reduce	noise	while	
making	them	less	independent),	and	some	a	priori	constraints	on	which	voxels	are	
meaningful	(those	in	the	brain,	rather	than	the	skull	or	ventricles),	the	~10^5	voxels	
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might	yield	only	10^4	or	10^3	effectively	independent	statistics	each	assessing	how	the	
task-contrast	at	a	particular	brain	location	varies	across	subjects.	

Thus,	the	whole-brain	across-subject	correlation	study	now	has	3D	grids	consisting	of	
thousands	of	independent	correlations	between	behavior	and	measures	of	BOLD	activity.		
These	can	be	(and	indeed	generally	are)	displayed	as	images	(across-subject	statistical	
parametric	maps);	however,	to	obtain	quantitative	summaries	of	these	results,	such	as	a	
correlation	coefficient	describing	the	brain-behavior	relationship,	investigators	must	
somehow	select	a	subset	of	voxels	and	aggregate	correlations	across	them.		This	is	
generally	achieved	by	defining	a	group	region	of	interest	either	anatomically	(e.g.,	all	
voxels	in	a	region	generally	agreed	to	represent	the	amygdala,	or	all	voxels	within	a	
certain	radius	of	some	a	priori	specified	brain	coordinates),	functionally	(e.g.,	voxels	with	
task-contrasts	that	behave	in	a	particular	way	across	subjects),	or	some	combination	of	
anatomy	and	functional	response.	

A	non-independent,	or	circular,	effect	size	estimate	requires	a	particular	confluence	of	
analysis	decisions.		First,	it	requires	that	the	group	analysis	be	carried	out	on	a	great	many	
measures	for	each	subject,	most	commonly,	a	whole-brain	across-subject	analysis.		
Second,	it	requires	that	the	voxels	over	which	effects	are	aggregated	are	selected	based	on	
the	effect	itself.		Third,	it	requires	that	the	same	data	be	used	to	estimate	the	effect	size	as	
were	used	for	selection.	
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Appendix B: Power calculations with False Discovery Rate correction 

Since	false	discovery	rate	(FDR)	correction	is	known	to	yield	greater	power	than	
familywise	error	control	procedures,	readers	might	wonder	whether	the	appallingly	low	
power	estimates	suggested	above	reflected	the	assumption	of	Bonferroni	correction	
rather	than	FDR.	We	can	also	calculate	power	for	a	false-discovery	rate	correction,	on	the	
assumption	that	it	is	carried	out	for	many	voxels,	by	adapting	the	calculations	of	(Liu	&	
Hwang,	2007)	to	the	across-subject	correlation	case.		Again,	we	need	to	assume	some	true	
population	correlation	underlying	the	non-null	voxels,	and	we	must	also	assume	the	
prevalence,	or	baserate,	of	voxels	that	have	this	signal.	What	kind	of	baserate	would	be	
plausible?		If	we	take	the	published	literature	at	face	value,	it	would	seem	that	fewer	than	
1/100	or	1/1000	voxels	in	the	whole	brain	carry	any	one	signal	(e.g.,	one	cluster	of	a	few	
dozens	voxels	in	a	105-voxel	whole-brain	analysis).		

We	find	that	power	with	FDR	correction	remains	very	low	for	detecting	reasonable	
population	correlations	(0.5),	unless	the	baserate	of	signal	carrying	voxels	is	implausibly	
high	(greater	than	10%;	Figure	12).	Specifically,	with	a	plausible	prevalence	of	1%	signal-
carrying	voxels	in	the	brain,	91%	of	the	studies	we	sampled	would	have	power	less	than	
10%	to	detect	a	population	correlation	of	0.5	(Figure	13).		Indeed,	to	achieve	80%	power	
for	an	FDR	corrected	whole-brain	analysis	looking	for	an	across-subject	population	
correlation	of	0.5	with	1%	prevalence,	a	study	would	need	66	subjects	(Figure	14).		While	
this	is	fewer	than	Bonferroni	correction,	that	sample	size	is	still	4	times	greater	than	that	
of	the	median	study	in	our	sample,	and	nearly	twice	as	large	as	the	largest:	in	short,	also	
an	impractical	sample	size.	

	
Figure 12.	Statistical	power	(y)	for	FDR	corrected	correlation	tests	as	a	function	of	population	correlation	
(panels),	sample	size	(lines),	and	the	proportion	of	voxels	in	the	whole	brain	that	contain	the	effect	(x).		A	
small	population	correlation	(ρ=0.25;	left)	yields	low	power	even	when	nearly	30%	of	brain	voxels	have	this	
signal.	In	contrast	large	correlations	(ρ=0.75;	right)	can	be	tested	with	high	power	with	just	16	subjects,	
provided	that	30%	of	the	voxels	contain	the	effect;	however,	if	only	1/1000	voxels	carry	the	signal,	then	
twice	as	many	subjects	are	needed	to	achieve	the	same	level	of	power.	A	test	for	an	optimistic,	but	plausible	
population	correlation	(ρ=0.5;	middle)	that	is	highly	localized	(occurring	in	1/1000	voxels	of	the	brain)	
requires	nearly	100	subjects	to	achieve	a	high	level	of	power.	
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Figure 13.	Histograms	of	the	power	the	studies	surveyed	by	Vul	et	al.	(2009)	will	have	to	detect	a	population	
correlation	of	0.5	or	0.75	with	FDR	correction,	under	different	prevalence	rates	of	the	effect	among	tested	
voxels.	36%	of	the	sample	sizes	used	in	these	studies	offer	a	lot	of	power	for	detecting	an	implausibly	large	
and	dense	population	correlation	(ρ=0.75,	prevalence=10%),	but	all	have	less	than	30%	power	to	detect	a	
plausible	(ρ=0.5)	correlation	with	a	prevalence	of	1%;	and	less	than	10%	power	if	the	prevalence	is	1/1000.		

 

	
Figure 14.	Sample	size	required	(y)	to	achieve	a	certain	level	of	power	(x)	as	a	function	of	the	population	
correlation	(panels),	and	the	proportion	of	signal-carrying	voxels	in	the	FDR-corrected	analysis.		A	
realistically	small	population	correlation	(ρ=0.25)	will	require	hundreds	of	subjects	to	achieve	adequate	
power.		However,	even	optimistic	but	plausible	population	correlations	(ρ=0.5)	require	many	more	subjects	
than	are	commonly	run	in	whole-brain	across-subject	correlation	studies,	if	true	effects	are	as	sparse	as	
reported	results	suggest.	


