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Abstract

The study of cognition, perception, and behavior often requires the estimation of thresholds as a function of
continuous independent variables (e.g., contrast threshold as a function of spatial frequency, subjective value
as a function of reward delay, tracking speed as a function of the number of objects tracked). Unidimensional
adaptive testing methods make estimation of single threshold values faster and more efficient, but substantial
efficiency can be further gained by taking into account the relationship between thresholds at different
values of an independent variable. Here we present a generic method — functional adaptive sequential
testing (FAST) — for estimating thresholds as a function of another variable. This method allows efficient
estimation of parameters relating an independent variable (e.g., stimulus spatial frequency; or reward delay)
to the measured threshold along a stimulus strength dimension (e.g., contrast; or present monetary value).
We formally describe the FAST algorithm and introduce a Matlab toolbox implementation thereof; we
then evaluate several possible sampling and estimation algorithms for such two-dimensional functions. Our
results demonstrate that efficiency can be substantially increased by considering the functional relationship
between thresholds at different values of the independent variable of interest.
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1. Introduction

In many psychophysical and cognitive experiments, stimuli are presented in multi-
ple trials, and the subject makes a response that is classified into a binary alternative
(e.g., seen/not seen, correct/incorrect, or too much/too little) after each trial. For in-
stance, in a taste detection experiment, one might aim to estimate how many grams
of sugar should be dissolved in liter of water to be detected 90% of the time; in
contrast sensitivity experiments: the contrast at which subjects respond with 75%
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accuracy; or in delay discounting experiments: the immediate value of a delayed re-
ward corresponds to a 50% chance of preferring a smaller immediate reward to the
delayed reward, etc. In general, the ‘psychometric function’ relates the proportion
of positive responses to stimulus strength (e.g., contrast, chromaticity, or imme-
diate reward value), and the results of such experiments are often summarized as
the stimulus strength necessary for a certain proportion of positive responses (e.g.,
a threshold for detection, a threshold level accuracy for discrimination, or a match
point giving equal proportions of positive and negative responses for matching).

Fechner’s pioneering discussion of psychophysical methods (Fechner, 1860) in-
troduced three methods to estimate these threshold: the Method of Constant Stimuli,
the Method of Limits, and the Method of Adjustment. Because the method of lim-
its tends to produce bias through hysteresis effects and the method of adjustment
yields slow, and potentially over-thought, responses, the method of constant stimuli
has been more often used as a general procedure for experiments of this type. In the
method of constant stimuli, the stimulus strength on any trial is selected randomly
from a fixed set. Due to the importance and prevalence of threshold estimation, and
the growing need to test more conditions faster, many adaptive testing techniques
have been developed to expedite the estimation process over and above the original
method of constant stimuli. The initial development of these techniques focused on
unidimensional threshold estimation: the parameters of a psychometric function, or
just a single point along the psychometric function.

However, modern psychophysical and cognitive experiments almost always mea-
sure not just a single threshold or match point, but how the threshold or match point
changes depending on some independent stimulus or task parameter of interest:
for instance, the contrast sensitivity function, which is defined by the change of
contrast threshold (the reciprocal of sensitivity) with spatial frequency. A single
experiment typically has the goal of estimating such a function, relating (usually)
threshold stimulus strengths or (less often) match points or null settings (we can
think of these measures as dependent variables in an experiment) to other stimulus
parameters (independent variables). We will refer to such a function, that a par-
ticular experiment is intended to estimate, as the ‘threshold function’, because the
threshold case is the most common. However, our discussion and proposals apply
equally to matching or null measurements that are based on responses that may be
classified into binary outcomes.

The threshold function in the sense used here is quite different from the psycho-
metric function that relates the proportion of positive responses to stimulus strength.
The threshold function specifies how the psychometric function as a whole depends
on some independent variable — for example, spatial frequency in the case of the
contrast sensitivity function. Typically the independent variable translates the psy-
chometric function on a suitably chosen axis. For example the change in contrast
sensitivity with changing frequency can be considered as a translation of the psy-
chometric function on a scale of log contrast. Likewise the threshold vs contrast
(TvC) function describes the just detectable contrast increment as a function of the
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contrast to which the increment is added; cortical magnification may be measured
as the threshold size necessary for some probability of detection (e.g., gap size for
Vernier acuity) as a function of eccentricity; the time-course of adaptation may be
expressed by the nulling stimulus strength as a function of adaptation time; and the
delay-discounting function may be expressed by the subjectively equivalent propor-
tion of immediate to delayed reward amount.

In all these cases and indeed in most psychophysical experiments, the estimation
problem is two dimensional, in the sense that the goal is the estimation of thresh-
old as a function of another variable. However, unidimensional adaptive methods
for assessing thresholds are less efficient for such problems, and there has been
relatively little work on general formalisms and algorithms for two-dimensional
adaptive testing. This is the problem we aim to address with Functional Adaptive
Sequential Testing: we seek to make estimation of threshold functions more effi-
cient, just as estimation of unidimensional thresholds has been made more efficient
with the development of adaptive testing methods since Fechner introduced psy-
chophysics.

2. Unidimensional Adaptive Testing

While there is no need for a thorough review of unidimensional adaptive testing here
(for useful reviews see: King-Smith and Rose, 1997; Klein, 2001; Leek, 2001; Mc-
Kee et al., 1985; Treutwein, 1995) it is useful to note where and how progress has
been made on this problem, as efficient estimation of the two-dimensional threshold
function must begin with efficient methods for the one-dimensional case.

Early methods for threshold estimation (Fechner’s method of constant stimuli;
Fechner, 1860) were inefficient (see Note 1). Many trials were wasted: stimuli were
presented at very high or very low stimulus strengths, at which subjects will nearly
always be correct or incorrect, and thus responses are minimally informative. This
was improved with adaptive reversal staircases, which reduced the frequency of
testing at the less informative stimulus strengths (Dixon and Mood, 1948; Wetherill
and Levitt, 1965).

Later, by explicitly formalizing the underlying psychometric function, proce-
dures like QUEST (Taylor and Creelman, 1967; Watson and Pelli, 1983) could
achieve even greater efficiency. By fixing the slope parameter of the underlying
function a priori, Watson and Pelli could use data from all of the trials to find
the most informative stimulus placement to estimate the threshold. Others (Cobo-
Lewis, 1997; King-Smith and Rose, 1997; Kontsevich and Tyler, 1999) extended
this procedure to estimate the slope parameter concurrently with the threshold, thus
rendering the estimation procedure more efficient and robust under variable slopes.
These are the current state-of-the-art adaptive, parametric threshold estimation pro-
cedures (see Note 2).
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3. Multidimensional Adaptive Testing

Despite this progress in estimating single thresholds, estimation of threshold func-
tions has seldom been considered. A straightforward approach has been called the
Method of 1000 Staircases (Cornsweet and Teller, 1965; Mollon et al., 1987): To
estimate the threshold function, estimate a threshold at many points along the func-
tion independently, and then fit a function to those points. The threshold at each
point of the function may be estimated efficiently (for instance with QUEST or a
reversal staircase), but because each threshold is estimated independently, such a
procedure encounters inefficiencies similar to those that arise in the method of con-
stant stimuli. Because each staircase is independent, it must start with assumptions
of ignorance, leading to several trials at minimally informative stimulus strengths —
across all of the independent staircases, many trials are wasted in this manner.

The QUEST (Watson and Pelli, 1983) and the Psi (Kontsevich and Tyler, 1999)
procedures allow more efficient unidimensional threshold estimation by choosing
the presented stimulus values that best constrain the parameters of the psychometric
function. Similarly, estimation of the threshold function can be made efficient by
specifying that function formally in terms of parameters whose values are to be
experimentally estimated. With the assumption that the slope of the psychometric
function is the same at points along the underlying threshold function, one may
define a probability surface (Fig. 1) with a relatively parsimonious parameterization
(Fig. 2).

This idea has previously been implemented for the cases of estimating the TvC
function (Lesmes et al., 2006), the CSF function (Lesmes er al., 2010), and the
somewhat more general case of ellipsoidal threshold functions (Kujala and Lukka,
2006). Although these examples use specific parametric models for specific applica-
tions, the assumption of independent translation of the psychometric function across
the threshold function can be fruitfully extended to a very broad family of paramet-
ric models that cover most experiments aiming to estimate parametric threshold
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Figure 1. (Left panel) The two dimensional response probability surface corresponding to a contrast
sensitivity function (probability of detection as a function of grating spatial frequency and contrast;
from equation (3)). (Right panel) The same surface for a decaying exponential curve, as would be
seen in the timecourse of aftereffects. This figure is published in colour on http://brill.publisher.
ingentaconnect.com/content/vsp/spv
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Figure 2. Like many two-dimensional functions of psychophysical interest, the contrast sensitivity
and decayed exponential response probability surfaces can be defined by factoring into a threshold
function (relating threshold contrast to spatial frequency, and match-point to time) and an invariant
psychometric function (relating probability of detection to stimulus contrast or match-point). This
figure is published in colour on http://brill.publisher.ingentaconnect.com/content/vsp/spv

functions, as suggested by Lesmes et al. (2006, 2010). Here, we write down the
formalization of such a generalized two-dimensional testing procedure and provide
a generic implementation of such an algorithm.

There are two primary advantages to characterizing the threshold function us-
ing parametric optimization, rather than independently measuring points along the
threshold function. First and foremost, each point along the threshold function is
informed by every other one: each trial contributes information about the psycho-
metric functions at all values of the independent variable by changing the most
likely values of the threshold function parameters (see Note 3). The utilization of
data across the threshold function speeds up the selection of optimally informative
stimulus parameters at each point as the sequence of trials progresses (Fig. 3). Thus,
estimation of all thresholds is more efficient and fewer trials are necessary to con-
verge on an estimate of the underlying function. Second, because any point along
this function can be used to inform the overall estimate of the function parameters,
estimation need not be restricted to several discrete points: instead one can sample
any point along the function. Such continuous sampling not only produces prettier
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Figure 3. 200 trials of a simulated experiment on the contrast sensitivity function and exponential
time-course using isolated sampling (independent adaptive threshold estimation at each point; upper
graphs), and adaptive functional sampling (lower graphs). Adaptive functional sampling can sample x
values randomly, and samples fewer trials at uninformative points of the stimulus space, where the y
value is far from its corresponding threshold. Crosses (red) correspond to negative responses; circles
(green): positive responses; the curves correspond to response probability quantiles of the final func-
tion fit. This figure is published in colour on http://brill.publisher.ingentaconnect.com/content/vsp/spv

graphs (Fig. 3), but may also indicate systematic deviations from the assumed func-
tional form that may otherwise be missed if the function is sampled at only a few
discrete points.

We will begin with a formal description of functional adaptive sequential testing,
then briefly describe the Matlab toolbox where we have implemented this method,
and present simulations and experiments demonstrating the reliability and efficacy
of this tool.

4. Theoretical Framework

The goal of functional adaptive sequential testing (FAST) is to estimate efficiently
the response probability as a function of stimulus strength (y) and an independent
mediating variable (x). As described previously for the TvC function (Lesmes et
al., 2006) and an ellipsoid function (Kujala and Lukka, 2006), this two-dimensional
probability surface is parsimoniously parametrized by partitioning it into two func-
tions: a psychometric function, and a threshold function that describes the transla-
tion of the psychometric function along the stimulus strength axis.

First, the probability of a response is described by a psychometric link function:

Pr:\p()’pv yCvS)’ (1)
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where p; is the probability of a particular response which we will refer to as the
positive response (for instance ‘yes’ in a detection task, or the correct alternative
in a forced choice task, or ‘too much’ in a matching task). W is the psychometric
function, which may be of any formulation desired (logistic, cumulative normal,
etc.). yp is the presented stimulus strength — for instance, if estimating a contrast
sensitivity function the y dimension would typically be the logarithm of the test
grating contrast. y. is the ‘threshold’ parameter that determines the translation of
the psychometric function along the y dimension. S is the width (or inverse slope)
parameter of the psychometric function — while psychometric functions may dif-
fer in what this slope parameter means, all have a parameter that corresponds to
the steepness of the function. Other parameters of the psychometric function (such
as lapse probability, or guessing probability) are typically fixed, and need not be
estimated through testing.

The threshold function relates the critical value, or translation parameter, of the
psychometric function described above to the independent variable of interest (for
example, the spatial frequency of a grating in the case of the contrast sensitivity
function):

ye=F(x,0), 2)

where F is the ‘threshold function’: a function that relates the independent variable,
X, to the translation of the psychometric function, y.. ® is a vector of parameters of
the threshold function, and the ultimate goal of the experiment is to estimate those
parameters.

To make this abstract formulation more specific, we continue with the contrast
sensitivity example and assume that we are estimating the probability of detection
as a function of grating contrast and spatial frequency. We employ the logistic psy-
chometric function for W as a function of the log contrast y, (lapse probability
parameters are excluded in this example). For the CSF we adopt an intuitive pa-
rameterization of the CSF as a log parabola (Pelli et al., 1986) for F, that allows
sufficient flexibility in specifying y. as a function of the spatial frequency x (see
Figs 1, 2 and 3 for plots of this function). Note that this is a simpler function than
that of Watson and Ahumada (2005) as used in Lesmes et al. (2010), although it
appears sufficient when no particularly low spatial frequencies are being tested:

pr=1/(14exp((yp — ¥e)/9)),

3)
Ye = 01 4+ 1093 (log (x) — ©2)*.

Here y. corresponds to the decimal log of contrast threshold. The parameter ® is
the decimal log of the contrast threshold at peak sensitivity, ®; is the decimal log
of the spatial frequency that yields peak sensitivity, and ®3 is the decimal log of the
inverse bandwidth of the CSF.

For any trial with presented stimulus values x;, and yj, the theoretical probability
of either possible response (r, quantified as 1 for the ‘positive’ response or O for the
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other response option, corresponding to yes/no or correct/incorrect), can be stated
for any set of model parameters (® and S) as:

- ) prs forr=1,

P(rle, yp, O’S)_ {(l_pr), fOI’I’=0 (4)
Multiplying this probability by the prior likelihood function in the model parameter
space in accordance with Bayes theorem, we obtain the posterior probability of a
given set of parameters (® and §) as:

Ppost(®, Slxp, Yp» r)~ P(r|xp7 Yp> 0, S)Pprior(®v S), )

where Ppior(©, §) corresponds to the prior probability of a given set of ® and
S parameters. The prior can be uninformative at the onset of the experiment, but
after the first trial will reflect any information gained from previous trials — that is,
the posterior from the current trial will be the prior for the subsequent trial. With
this equation, all of the elements necessary for Bayesian estimation of the posterior
probability of the parameters of W and F are in place, and we must next decide how
to sample stimuli for efficient estimation of these parameters.

4.1. Stimulus Placement

Placement of a stimulus on any given trial determines the information we should
expect to obtain on that trial. There are several available placement strategies that
may be roughly divided along two dimensions. First, should we choose a global
‘optimal’ position in both dimensions (x and y), or a local optimum by picking
the best y for a given x? Second, what defines ‘optimality’? What follows is a
description and discussion of this space of placement strategies as implemented in
FAST.

4.2. Global Placement Strategies

One may decide to choose x and y values simultaneously to find the globally most
informative stimulus parameters (Lesmes et al., 2006). The obvious advantage of
choosing the globally most informative point is that the trial is guaranteed to provide
the most useful information, given the assumed parameterization of the response
probability surface. One drawback of global placement strategies is that if the form
of the assumed threshold function is wrong, global minimization may choose (x, y)
locations that would be most informative if the function were correct, but are not
efficient for detecting deviations from this hypothesis and may not be efficient for
estimating parameters of an alternative function, once the deviation is established.
Moreover, the computations required for choosing the globally optimal stimulus
may be slower than is desirable.

4.3. Local Placement Strategies

Alternatively, one may choose the locally optimal y value given a fixed x (choos-
ing the most informative contrast given a pre-determined spatial frequency), while
x is either sampled randomly, or according to some fixed scheme (for instance,
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decay-time in adaptation experiments). Although local placement strategies are
theoretically less efficient than choosing the global optimum, the lost efficiency
is traded for increased robustness.

4.4. ‘Optimality’: Minimizing Expected Posterior Entropy

The principle of minimizing expected posterior entropy of the multimensional prob-
ability density function for the parameter values has been recently advocated as a
method for stimulus placement (Cobo-Lewis, 1997; Kontsevich and Tyler, 1999;
Kujala and Lukka, 2006, Lesmes et al., 2006). This method is motivated by infor-
mation theory and selects stimuli so as to maximize the certainty about parameter
values one may have after the trial, thus maximizing the information gained from
that trial. This method has been described in sufficient detail in the papers cited
above, and our procedure is broadly similar to theirs (see Appendix B). This method
has the advantage of providing the theoretically most informative point, given the
goal of increasing confidence about parameter values; however, the tradeoff be-
tween efficiency of estimating one or another parameter is made arbitrarily based
on the scale and resolution of those parameter values. In practice, small changes
along one parameter might make a much larger difference to the response proba-
bility surface than large changes along another parameter, and expected posterior
entropy of the distribution of parameter values cannot take these factors into ac-
count.

4.5. ‘Optimality’: Minimizing Average Expected Posterior Predictive Variance

One principled method for trading off efficiency in estimating one parameter or an-
other would be to explicitly take into account the impact of these parameters on the
response probability surface. To do so, we define a new optimality criterion: Min-
imizing expected average posterior predictive variance (or ‘minimizing predictive
variance’ for short). Essentially, this amounts to finding a stimulus value which is
expected to alter the posterior distribution in a manner that decreases the uncertainty
about the predicted threshold (y*) values across a range of x values deemed rele-
vant (see Appendix C for a mathematical treatment). On this optimality criterion,
the tradeoff between different parameters is made implicitly through their impact on
the predicted threshold values: focusing on the statistics of the expected threshold
distribution ensures that trials will not be wasted to efficiently estimate parameters
that have little impact on the predicted thresholds. One could choose to minimize
the entropy, rather than the variance, of the posterior predictive pdf of the threshold.
But variance minimization is appropriate if larger errors carry a greater cost than
small ones. Variance minimization is optimal when cost increases as the square of
the error, while entropy minimization is not supported by any such increasing cost
function, instead minimizing errors without regard to their size (Twer and MacLeod,
2001). The minimum expected variance criterion provides a principled method for
trading off the precision of different parameters, that can be generally applied to
all threshold functions. But it has some drawbacks. It provides no incentive for ef-
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ficient estimation of the slope parameter of the psychometric function. It is slower
to compute than minimum expected posterior entropy, and most important, in our
hands (see simulation section) it does not in practice provide a substantial benefit.

4.6. ‘Optimality’: Obtaining Constant Response Probabilities

A classical, and intuitive, stimulus selection procedure favors sampling a specific
response probability quantile: that is, choosing stimulus parameters that will yield a
particular p;. This is done in many staircasing procedures transformed or weighted
to converge to a specific quantile (Kaernbach, 2001). If the data are being used to
constrain the slope of the psychometric function, multiple response probabilities
must be tracked, much as in multiple staircase procedures. For the case of two-
dimensional estimation, only one y value will produce a particular probability of
response at a given x value. This y value can be found by adopting the current best
estimate of the parameters ® and S; computing y. for the chosen x value from
the threshold function and the current best estimate of ®, and then computing the
inverse of the psychometric function to find the y value at quantile p;. But it is not
logical to condition one’s estimates of one parameter on definite assumed values
for other parameters that are in fact uncertain. So in FAST, we instead combine all
possible values in the parameter space in proportion to their posterior probability,
thus avoiding premature commitment to a currently plausible estimate of the model
parameters.

This space of placement strategies yields several plausible combinations: global
and local entropy minimization, global and local minimization of predictive vari-
ance, and local quantile sampling. These alternatives are implemented in FAST, and
their relative advantages are discussed in later sections.

5. Implementation
5.1. Estimating the Posterior Likelihoods

Functional adaptive sequential testing is designed to be a general procedure for es-
timating threshold functions. The estimation approach we have described may be
implemented in a number of different ways, each with certain advantages, and each
with certain drawbacks. A number of probabilistic sampling methods are guaran-
teed to converge to the true posterior probability defined over the entire space of
® and S (e.g., MCMC; Kuss et al., 2005); however, these methods may take thou-
sands of iterations to converge. For adaptive testing in psychophysical experiments,
the posterior over ® and S should ideally be recomputed before each trial so that the
stimulus for the next trial can be chosen most appropriately, thus MCMC strategies
tend to be prohibitively slow.

An alternative to running a full MCMC search is to employ sequential monte
carlo (particle filtering). This method will also converge on the true posterior, and
is efficient for online estimation problems. However, the optimal proposal distribu-
tion for the essential MCMC rejuvenation step (Kujala and Lukka, 2006) is usually
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specific to particular parameters, and as such, this step may be ineffective or slow in
the generic case. Thus, to make this computation speedy for any threshold function,
we opted to do a simple grid search (Kontsevich and Tyler, 1999; Lesmes et al.,
2006).

At initialization of the FAST structure, we define a lattice over parameter space.
Each parameter is sampled within user-defined bounds (either logarithmically or
linearly), with a particular uniform sampling density (this sampling density varies
depending on the number of parameters, since for each added parameter, the total
size of the parameter grid is multiplied by the number of sampled values).

Each point in the lattice defined over parameter space corresponds to a certain
vector of values of psychophysical function parameters (®) and the psychometric
slope parameter (S). Each point is also initialized with a prior probability (which
may be informative, uninformative, or uniform, as deemed appropriate). After each
trial, the log-posterior probability of each parameter lattice point is updated by
adding the log of the likelihood of the new response under the parameter values
represented by that lattice point. Thus, the un-normalized log-posterior is computed
after each trial.

5.2. Dynamic Lattice Resampling

With only a finite number of points in the parameter lattice, there is an unavoidable
tradeoff between the range and density of sampled parameters. From one exper-
iment to the next, one might opt for a larger range, or a finer sampling grain, but
inevitably, a situation will arise wherein both a large range and a fine sampling grain
are required. In such situations, if one samples too narrow a range (but with high
enough density) one may find that the maximum a posteriori parameter values are
not contained in the parameter lattice, and testing will be inefficient, if not useless;
similarly, if one samples too coarsely (but with a sufficiently wide range), steps
between lattice points may be too large for efficient testing.

Although Lesmes et al. (2006) reported that the sampling density over parameter
space did not substantially alter the efficiency of the qTvC algorithm, we find that
in cases of more extreme undersampling these problems do arise. In the qTvC case,
such problems can, for the most part, be avoided due to the small number of para-
meters required for the linear TvC function. However, for functions like the CSF,
where the total number of parameters (including slope) is 5 or higher, the number
of lattice points rises with n° (or even steeper), where n is the number of sampled
points along each parameter. In such cases, the computational costs associated with
high sampling densities become prohibitive.

Since FAST is designed to operate in the general case, with any threshold func-
tion, this is a considerable problem. Our solution is to adopt dynamic resampling,
or a ‘roving range’. Once some considerable amount of data has been gathered
(enough to provide a reasonable estimate of the probability surface over the current
parameter lattice), one may resample the parameter lattice such that it either shifts
or shrinks appropriately to converge on the global maximum.



494 E. Vul et al. / Seeing and Perceiving 23 (2010) 483-515

Specifically, we obtain an estimate of the parameter values, and uncertainty over
those values (the marginal mean and standard deviation; see next section). Using
these estimates, we pick a new range that is centered on the marginal mean, and
spans several standard deviations (2 is used in the subsequent simulations) on either
side of the mean. With this method, an initial coarse range will shrink as addi-
tional information is gleaned about the underlying parameter values — similarly,
an initially misplaced parameter range will shift to higher probability regions of
parameter space.

Although the details of this algorithm are rather unprincipled, we find that in
practice, dynamic resampling is quite helpful (see simulations in later sections).

5.3. Estimating Parameter Values

From the computed joint posterior probability density (pdf) over the parameter lat-
tice, there are several possible ways to derive a point estimate and corresponding
confidence measure for each parameter value. We focus mainly on the ‘marginal’
probability density function, in which the N-dimensional pdf in the space of pa-
rameter values is integrated over all parameters except the one of interest, to yield
1-dimensional pdfs for each parameter in turn (this may be loosely thought of as the
profile of the N-dimensional joint probability density as projected onto the axis of
interest). The peak of the marginal pdf does not generally agree with the peak of the
N-dimensional pdf. The latter estimate, from the ‘maximum a posteriori’ (MAP)
point in the N-dimensional space of parameter values, would be appropriate if we
knew that the values of all other parameters were the ones associated with the MAP
point. But in reality, of course, the values of all parameters are uncertain, and the
probability of any given value for a single parameter of interest has to include all
the cases generated by variation in the other parameters. This is what the marginal
pdf represents (illustrated in Fig. 4).

In specifying the confidence interval or standard error for the estimates, similar
considerations arise. The most likely value for one parameter generally depends,
often strongly, on the values assumed for the other parameters. This creates a ridge
of high probability in parameter space. The standard error for one parameter is of-
ten calculated on the assumption that the parameter of interest is varied in isolation,
with other parameters pinned at fixed values. The resulting error measure reflects
the width of that ridge (usually, the cross-section through the MAP point in the
relevant direction). But when the concurrent uncertainty about other parameters,
as reflected in the N-dimensional pdf, is taken into account, the appropriate ‘in-
tegrated’ uncertainty measure is determined from the marginal pdf. FAST reports
this ‘integrated standard error’, which is commonly much greater than the ‘isolated’
standard error obtained from the cross-section through the MAP point.

In practice, FAST samples the continuous marginal pdf for any parameter at lat-
tice points equally spaced over a finite range. The lattice can be recentered and
rescaled by resampling, as described above, but the estimate of the mean and stan-
dard error of the pdf are always prone to distortion by truncation and sampling error.
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Figure 4. Parameter estimation procedure. We begin with a multidimensional probability density
function (pdf) sampled at a few discrete lattice points (grey bars). By summing over all other
parameters, we obtain a marginal probability distribution for a parameter of our choosing (two
sets of black bars correspond to these marginal distributions). We then fit a Gaussian distribu-
tion to these marginals to obtain an estimate of the marginal mean and standard deviation that is
less susceptible to truncation (red lines). This figure is published in colour on http://brill.publisher.
ingentaconnect.com/content/vsp/spv

Notably, when the parameter lattice is too coarse and concentrates the probability
mass at one sample point, the mean regresses toward that point and the standard
deviation based on the sampled points is an underestimate of the standard devia-
tion of the complete pdf. Both in FAST’s intermediate computations and in its final
estimates, these problems are addressed by fitting a Gaussian to the lattice point
probabilities (see Fig. 4), and using the mean and standard deviation of the fitted
Gaussian, rather than the sample values, to represent the mean and standard devia-
tion of the continuous pdf.

By focusing on the 1-dimensional pdfs during intermediate computations, FAST
initially neglects the correlational structure of the N-dimensional pdf. That struc-
ture might seem important not only for a complete characterization of the uncer-
tainty in parameter values, but also for directing the resampling process described
above along the ridge of high probability in parameter space. The resampling pro-
cedure in FAST addresses this by always recentering the sample points for each
parameter in turn. In this way the sequence of N 1-dimensional translations moves
the lattice efficiently along the ridge.

The Gaussian description may be poor in cases where the contours of the pos-
terior probability function in parameter space deviate markedly from symmetry
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around the peak, as commonly happens when the slope parameter S of the psy-
chometric function must be estimated from the data). In these cases the mean of the
Gaussian fit to the maringal pdf differs from the mode of the marginal pdf as well as
(generally) from the MAP. But even here the mean remains the optimum estimate
in the least squares sense, and minimizes the cost of errors if cost increases as the
square of the error (see Note 4).

5.4. Choosing Stimuli

Choosing informative stimuli by minimizing the entropy of the expected posterior
probability distribution requires that the expected posterior probabilities be evalu-
ated for every stimulus of interest. This is impossible in practice, and numerical
approximations must be used.

To carry out these calculations for global stimulus placement strategies, we
define conditional probability look-up tables for a pre-defined range of stimulus
values. The conditional probability look-up table specifies the probability of a pos-
itive or of a negative response under each set of parameters in the lattice for a given
stimulus. These conditional probabilities are the factors by which the relative likeli-
hood of each set of parameter values is changed when the response is known. Using
this look-up table, one can compute, for any proposed stimulus placement, the ex-
pected posterior entropy for a trial with that stimulus placement, and choose the
stimulus placement that minimizes this value. In this manner, the expected poste-
rior probability over the space of x and y stimulus values may be computed with
reasonable efficiency. To circumvent the loss of resolution associated with discrete
sampling of the stimulus space in the pre-defined look-up table, we also implement
quadratic interpolation to estimate the optimal stimulus values, as we did for the
interpolated MAP estimator.

Carrying out the conditional probability calculations for local stimulus place-
ment is easier because fixing x greatly reduces the number of alternative stimulus
placements that need to be considered. Thus, the optimal stimulus strength y for
a particular x value is a relatively fast computation that can usually be made on a
trial-by-trial basis without constructing a conditional probability look-up table for
all x values in advance. Our implementation of this search is recursive: we coarsely
sample a range of y values, and compute the expected posterior entropy for each.
We then choose the y value that minimizes this quantity, and resample more finely
around this y value. A few iterations quickly produce a fine-grained optimal esti-
mate that is typically much faster than finely sampling the full initial range of y
values.

6. Simulation Results

In this section we present computer simulations that illustrate the efficiency and
flexibility of FAST. In these simulations, all parameter estimates are obtained using
the mean obtained from a Gaussian fit to the marginal pdf (see section on Estimation
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for details and a priori justification; see Fig. 9 and accompanying discussion for
empirical justification).

We evaluate the parameter estimates obtained from a particular simulation in
terms of their error:

1~
2
MSE(®)) = Z(@)i, j— 0% (6)
i=1
where ® is the true parameter vector, O is the parameter estimate,  is experiment
number, and j is the parameter number. Thus, error MSE(® ) is the mean squared
deviation, to which bias and variance both contribute.

6.1. Efficiency in an Extreme Case

The FAST algorithm is most effective when estimating functions with many sam-
pled points. It was developed for the purpose of estimating time-courses of after-
effects — a scenario in which the gains from functional estimation over isolated
estimation are most dramatic.

We compare adaptive functional testing to adaptive testing at several discrete x
values without assuming an underlying threshold function — ‘the method of 1000
staircases’ (Mollon et al., 1987; or more precisely, 100 staircases to simulate a
sensible time-course experiment, Vul et al., 2008). Each independent staircase tests
adaptively according to our implementation of the Psi testing algorithm described
by Kontsevich and Tyler (1999).

For these simulations, we adopt a logistic psychometric function, as would be
natural to use in a matching task, and assume that the underlying threshold function
is an exponential decay:

ye =01+ (02 — O1)(1 —exp(—x/03)), (7

where © is the initial (pre-adaptation) threshold value; ®, is the saturation point;
and ©®j3 is the time-constant.

We compare the error in estimating these parameters over 1000 trials when those
trials are sampled according to 100 independent staircases (at each of 100 time-
points), to estimation over those same time-points using functional adaptive testing,
where the stimulus placement at each point is informed by all other points. For each
of the 250 simulated experiments, we randomly choose new parameter values for
® and S. ©; is drawn uniformly from the range of —4 to 4; ®; is drawn uniformly
from the range of —15 to 15; ®3 is drawn uniformly from the range of 1 to 50;
and S is fixed to 0.4. The prior probabilities over these values for the estimation
are: ©1: normal with 4 =0,0 =3; ©2: u =0, 0 =8; ®3: log;, normal with ; =
0.75,0 = 0.5; S: log;y normal with © = —1,0 = 0.8 (the parameters that have
log-normal priors are ones that have a [0, o) support).

Figure 5 shows the results of our simulations: Functional testing confers a sub-
stantial early advantage over independent testing at different points along the func-
tion, and this initial advantage is sustained over 1000 trials for nearly all (local)
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Figure 5. The mean squared error as a function of the number of trials for different stimu-
lus placement strategies estimating an exponential decay curve (as often used to describe the
time-course of aftereffects). The four panels represent different parameters, from top to bottom:
initial null-setting value (at ® = 0), saturated null-setting value, time-constant, and logistic slope
parameter. Mean squared error decreases substantially faster under all functional sampling schemes
compared to independent adaptive estimation procedures at each timepoint (of 100), and this ini-
tial advantage persists throughout the course of many trials. This figure is published in colour on
http://brill.publisher.ingentaconnect.com/content/vsp/spv

functional testing strategies outperform independent testing throughout the dura-
tion of the ‘experiment’; thus validating the basic premise of FAST: substantial
testing and estimation efficiency may be gained by explicitly considering the func-
tion relating variation in thresholds to an independent variable.

6.2. Efficiency in a Less Extreme Case (CSF)

The previous example was designed to illustrate an extreme situation in which one
seeks to obtain threshold estimates at 100 different points along a function — in this
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case, running 100 independent staircases is grossly inefficient compared to sam-
pling those 100 points while considering the underlying function. However, few
psychophysical experiments aim to assess a function with that level of precision;
often, a much smaller set of points is used. In this section, we aim to both illustrate
the generality of functional adaptive testing by applying it to the contrast sensitivity
function, and also to quantify the reduced benefit of functional adaptive testing over
independent testing when fewer points are considered.

In this case we adopt a logistic psychometric function with a 4AFC detection
task (mimicking the psychophysical data presented later in this paper), and assume
that the underlying threshold function is the log-parabola contrast sensitivity func-
tion from equation (3) and Figs 1-3. We compare the error in estimating the three
parameters of this function over 800 trials when those trials are sampled accord-
ing to 14 independent staircases (at each of 14 spatial frequencies, equally spaced
on a logarithmic scale), to estimation over those same spatial frequencies where
the stimulus placement at each point is informed by all other points via the com-
monly estimated function. For each of the 100 simulated experiments, we randomly
choose new parameter values for ® and S. ®; is drawn uniformly from the range
of —4 to —1; ®; is drawn uniformly from the range of —1 to 1.5; ®3 is drawn
uniformly from the range of —1.5 to 0.5; and § is drawn from the range of 0.01
to 0.4. The prior probabilities over these values for the estimation are: ®1: normal
with u = —-2,0 =2;07 : u = —1,0 = 2; ®3: normal with u = —1,0 =0.3; S:
log;, normal with u = —1,0 = 1.

Figure 6 reveals the predicted effect — with only 14 points being independently
tested, the advantage of functional testing is much less dramatic than with 100
points. Nonetheless, a considerable advantage remains and lasts over the whole
range of trials. Again, as can be seen in the results for the slope parameter, the
optimality criterion has an important effect, wherein stimulus placement via pos-
terior predictive variance minimization is particularly poor at estimating the slope
parameter — this is to be expected, as the variance of the predicted threshold is
completely independent of the slope, so stimuli are not chosen to estimate this pa-
rameter.

6.3. Dynamic Lattice Resampling

Although Lesmes et al. (2006) found no substantial effects of decreasing the para-
meter sampling grain for the qTvC method, all of the sampling grains tested were
rather fine. This is practicable for the qTvC case, wherein there are only three pa-
rameters to be estimated. However, in the general case, where one might aspire to
test different functions, with potentially higher-dimensional parameter spaces, the
sampling density becomes an issue (indeed an exponential issue, as the total num-
ber of lattice points increases with the power of the number of dimensions). Thus
we tested the effects of rather dramatic under-sampling of parameter space: 5 lattice
points per parameter.
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Figure 6. The mean squared error as a function of the number of trials for different stimulus placement
strategies estimating a contrast sensitivity function. The four panels represent different parameters (see
equation (3)). Here, the advantage of functional estimation over independent is smaller because fewer
independent staircases are used (14). Moreover, a marked detriment is evident for the precision of
estimating the slope parameter for predictive variance minimaztion. This figure is published in colour
on http://brill.publisher.ingentaconnect.com/content/vsp/spv

Figure 7 shows the perhaps intuitive results of under-sampling: lower sampling
density effectively caps the accuracy of parameter estimates. A coarser parameter
sampling grain results in a higher asymptotic RMSE for all parameters. However,
when we allow dynamic resampling of the 53 lattice (the ‘roving range’ we imple-
mented), this problem is substantially reduced: we achieve much lower asymptotic
errors by dynamically shrinking and resampling the (under-sampled) parameter lat-
tice.
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Figure 7. A ‘roving range’ (dynamic lattice resampling) mitigates the problems that arise from sparse
sampling of the parameter lattice — by shifting and shrinking the lattice, we can achieve greater
accuracy.

6.4. Effects of Assuming an Incorrect Function

Here we consider the effects of assuming an incorrect model of the data. Although
global entropy minimization is theoretically most efficient for estimating the para-
meters of the assumed model, the data gathered by global stimulus placement may
not be as effective at constraining the parameters of another model (which may
turn out to be the reality underlying the data). To test this idea, we run 250 exper-
iments, each with 800 trials, where we attempt to fit the correct (non-linear) TvC
function to data that were gathered on the assumption of a linear TvC function, us-
ing two sampling schemes: (1) global entropy minimization, and (2) local entropy
minimization.

Specifically, we conduct simulations in which the real model is a non-linear TvC
function:

X

03
@ - ) f ®9
Ye= 2<@1> ore = ®)
®,, forx <Oy,
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Figure 8. When stimulus sampling is done assuming a linear TvC function (equation (9)), but in fact,
the correct model is a non-linear TvC curve (equation (8)), global stimulus placement schemes confer
a substantial detriment, as seen in the final mean squared error when fitting the final, correct, function.

while functional testing assumes a simpler, linear TvC function:

®2i, for x > @y,
Yo = ©; )

®), forx < ®;.

Figure 8 shows that data gathered with the goal of global entropy minimization
are far less effective at constraining parameters of an alternate (and only slightly
different) model, yielding substantial bias, and greatly inflated mean squared error
over parameter values estimated using local entropy minimization. For this reason,
we advocate using fixed or random sampling of x values, and local, functional,
stimulus selection.

6.5. Validation of Estimator and Estimation Procedure

Thus far, we have presented data describing the efficiency of different adaptive
sampling schemes while the estimates themselves were obtained using a somewhat
rarely adopted estimation procedure: fitting a Gaussian probability density function
to the marginals of each parameter, and using the resulting mean and standard de-
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viation. In this section, we demonstrate the validity of this estimator by empirically
calibrating the confidence intervals obtained from it. We ask: does a g% confidence
interval around the mean of this Gaussian have g% probability of containing the
true value (in simulations)? This can be measured in two ways: Z-quantiles over
time, and quantile—quantile plots.

To obtain Z-quantiles over time, for each simulated experiment, trial, and pa-
rameter, we compute the mean and standard deviation of the current Gaussian fit
to the marginals. We compute Z¢r = (@ — [ig)/0e, Where Zg is the Z-score
distance of the true parameter value ®, from the Gaussian mean ({ig) and stan-
dard deviation (6¢ estimated for that parameter). By computing this quantity for
each trial, each experiment, and each parameter, we obtain a large number of Z-
scores. To check the calibration of the Gaussian fit to reality, we then compute
the Z-quantiles, asking: what is the Z-score threshold such that g% of all com-
puted Z. values are below it? If the procedure is calibrated, we should expect
these quantiles to remain constant over an experiment (despite the fluctuations in
mean squared error seen in Fig. 5), and to correspond to the theoretically correct
quantiles: Zhresh(q) = GEIIDF(q, u=0,0 =1), where GEIIDF is the inverse of the
Gaussian cumulative density function. For example, g = 0.025 yields the famil-
iar Zmresh(q) = —1.96. Figure 9 shows that this plot for the exponential data from
Fig. 5 reflects an ideal, stable calibration (similar results obtain for other simula-
tions).

A quantile—quantile (QQ) plot is a fine-grained summary of the results presented
above. To compute the QQ plot in Fig. 9, we calculate the Z-score boundary of

C1=90%, Z=[-1.64, 1.64] Cl=60%, Z=[-0.84, 0.84]
5 C1=80%, Z=[-1.28, 1.28] C1=20%, 2=[-0.25, 0.25]
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Figure 9. (Left panel) Z-quantile calibration, here we show a representative sample of two parame-
ters (the initial setting in an exponential decay, and the slope parameter from an exponential decay —
see equation (7)). Z-score quantiles of parameter errors are stable over time, and near their theoreti-
cal values. (Right panel) This calibration of the Gaussian fit to the marginal distribution can be seen
in the QQ plot, where the confidence interval percentile predicts with near perfect identity the em-
pirical quantile (e.g., 95% of true parameter values lie within a 95% confidence interval). Different
lines here correspond to different parameters of the exponential, all are near the unity line indicat-
ing that our estimator is generally well calibrated. This figure is published in colour on http://brill.
publisher.ingentaconnect.com/content/vsp/spv
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a q% confidence interval around the mean: CI = GE]IDF(O-5 +¢/2,0,1). Then we
compute the proportion of trials in which the true parameter value lies within this
confidence range p. Figure 9 plots p as a function of g. A perfectly calibrated plot
will yield a perfect diagonal with unity slope, such that every g% interval contains
p% of the true values. Our data are well aligned with this ideal, showing none of
the over-confidence (a line below the diagonal) of truncated marginal estimators,
or much of a miscalibration due to the true posterior not being Gaussian (often
revealed as a crossing of the diagonal).

7. Psychophysical Results

FAST has been used to advantage in our investigations of topics including the time
course of the generation and decay of afterimages; the dynamics of contrast gain
control; and contrast sensitivity functions. We next report an experiment designed
specifically to provide a comparison between the efficiency of FAST and other
methods. This was a CSF measurement in which trials generated by FAST are inter-
leaved with trials generated by a similar search algorithm operating independently
at each spatial frequency.

We used a four-alternative forced choice procedure to measure contrast sensi-
tivity as a function of spatial frequency. The stimulus was an annulus displayed
for 200 ms. On each trial, one quadrant, randomly selected, contained a radial
sinusoidal contrast grating, while the other three quadrants were of uniform lu-
minance. Subjects were asked to indicate which quadrant was nonuniform. The
luminance of each quadrant was independently offset by a small random amount
each trial, to prevent detection of the nonuniform quadrant through a difference in
average luminance (despite a gamma-corrected display). Eight spatial frequencies
were presented in a cycle, and an equal number of trials were presented at each
spatial frequency.

To compare the performance of FAST with the performance of independent
staircases, we used two conditions, which ran simultaneously with trials randomly
interleaved. The difference between the two conditions was in the method used to
select the level of contrast for the stimulus grating. In both cases, the contrast level
was chosen so as to be detectable at a rate between 0.65 and 0.85, based on data
from previous trials. In the independent condition, the detection threshold was es-
timated for each spatial frequency based only on data collected from that spatial
frequency. In the CSF condition, FAST estimated the detection threshold based on
data previously collected from all spatial frequencies, under the assumption that the
contrast sensitivity function would fit the form of a log parabola CSF (Pelli et al.,
1986). The log parabola CSF model fits a parabola to the logarithm of the spatial
frequency (equation (3)), such that ®; determines the level of contrast sensitivity
at the peak (shifting the parabola up and down); ®; determines at what spatial fre-
quency this peak occurs (shifting the parabola left and right); and ®3 determines the
rate at which sensitivity drops off (stretching the parabola horizontally). Data were
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only used to inform the adaptive testing procedure in the same condition, so the CSF
and independent conditions remained independent in their parameter estimates and
choice of stimuli throughout the experiment.

After data were collected, they were pooled to calculate a final estimate of
contrast sensitivity, both independently at each spatial frequency, and using the
log parabola CSF (Fig. 10). We used the final independent estimates of contrast
threshold at at spatial frequency x (y}) as ‘ground truth’ to evaluate the error.
Mean squared error for each trial, for each condition was computed using equa-
tion (6). The estimated contrast threshold, y}, for a given spatial frequency was
calculated using the same method by which data were collected for that condition:
For the independent condition, each spatial frequency’s threshold was calculated
independently, and for the CSF condition FAST estimated the threshold using the
log-parabola CSF. For both conditions, the estimate at trial # was compared against
the final independent estimate y; based on all data from every condition at a given
spatial frequency.

In the first 100 or 200 trials, the FAST condition obtains a more accurate estimate
than the independent condition due to the advantages of pooling information across
spatial frequencies and more effective stimulus placement. Thus, as our simula-
tions suggested, FAST can be used to expedite the estimation of contrast sensitivity
functions, even when a small number of spatial frequencies are tested (for a thor-
ough treatment of expedited CSF estimation through functional adaptive testing,
see Lesmes et al., 2010). However, after about 200 trials, the precision of the in-
dependent threshold estimates becomes sufficient to uncover systematic deviations
from the model. If the model cannot fit the data perfectly (likely, most real-world
cases), the error of a model-based estimate will have a nonzero asymptote because
even after the parameters reach their optimal values, there will still be a difference
between the model and reality. The independent estimate, providing more degrees
of freedom, can be expected to perform better in the long run, and does so here; but,
of course, data collected efficiently using FAST may later be fit with independent
thresholds to take advantage of these additional degrees of freedom.

8. Discussion

Since Fechner (1860) suggested that perception can be measured against a phys-
ical standard, researchers have been estimating psychophysical thresholds and
match points across the gamut of perceptual domains. As the sophistication of
psychophysical experiments has increased, so too has the demand for efficient mea-
surement of thresholds, and experimental methods have been gradually improving
to meet this demand. However, as of yet, no general two-dimensional threshold
estimation procedure has been proposed. We described a general and efficient algo-
rithm for estimating two-dimensional response probability surfaces, and provide a
Matlab implementation of the algorithm. While the FAST toolbox provides a vari-
ety of alternative strategies for stimulus placement and parameter estimation, here



506 E. Vul et al. / Seeing and Perceiving 23 (2010) 483-515

== CSF condition
- = ~Independent condition |

e ot

-1 * y \ I‘\
» , . \" "‘
g ‘I .\
[+ - Lo,
W
-2. A
#V
= CSF condition
| = = ~ Independent condition .
3 A,
10° 10’ 10°
25—
e,
"~ -
2l o

-
wn

—
e

log contrast sensitivity

o
3

log spatial frequency

Figure 10. (Top panel) Mean squared error (log scale) for estimated threshold values as a function
of the number of trials (log scale). Predictions using isolated staircases are less accurate as compared
to functional adaptive testing. (See text for details.) (Center panel) Simulations using the final thresh-
old estimates obtained from the psychophysical data and the same simulated testing procedure —
these results indicate that given identical model mis-specification, our idealized simulations predict
gains similar to those seen for real human observers. (Bottom panel) Final model fit to the data (lines
correspond to different response probability quantiles — 40% 60% and 80%) and final independent
threshold estimates of the 62.5% quantile (asterisks), in this case, the simple log-parabola CSF func-
tion appears to be a satisfactory (albeit imperfect) model of the data.
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we want to briefly discuss the strategies that seem best, and potentially useful future
extensions of this work.

8.1. Assumptions of Functional Adaptive Sequential Testing

As mentioned throughout the paper, the functional adaptive testing formulation
does make several important assumptions, which may yield imprecise, and perhaps
misleading, results if violated.

First, like nearly all psychophysical testing procedures and experimental de-
signs, our formulation assumes that experimental trials are exchangeable — in other
words, they are invariant to order. This assumption is crucial to essentially all cog-
nitive and psychophysical experiments, but may often be violated due to a temporal
correlation of errors (e.g., from phasic internal states) or learning effects. For basic
threshold estimation, FAST may be used to account for online learning by modeling
the threshold as an exponential learning curve, thus allowing for some robustness
to these effects; however, if FAST is used to estimate a threshold function, like a
CSF, learning effects will constitute unaccounted for variability. This is not a se-
rious problem — in the worst case scenario such learning or temporal correlation
effects will increase response variance and thus reduce the efficiency when testing
human participants, but this loss of efficiency will apply to any common testing
procedure.

Second and more critically, we must assume that the psychometric function is
translation invariant in both stimulus strength and the independent variable of in-
terest; in other words a single slope parameter captures the relationship between
increasing stimulus strength and probability of positive response regardless of vari-
ations of the independent variable (e.g., spatial frequency) and critical value (e.g.,
75% discrimination contrast threshold). Within the apparently wide jurisdiction
of ‘Crozier’s Law’ of proportionality between threshold stimulus magnitudes and
their standard deviations (Treisman, 1965), the translation assumption holds pro-
vided that the psychometric function is expressed in terms of the logarithm of the
stimulus magnitude. With that caveat, the translation assumption appears to be ap-
proximately valid in the literature (Watson and Pelli, 1983), but it may well be
violated in particular psychophysical or cognitive paradigms.

Third, FAST requires an assumption of a particular parametric form of the thresh-
old function — this assumption will generally be insecure and at best inexact (for
instance, will delay discounting follow an exponential or a power law?) For this
reason, we prefer local to global stimulus placement (see next section) thus trad-
ing off some theoretical efficiency in favor of robustness to an incorrect assumed
functional form. We stress that FAST is not rendered useless by failure of the the-
oretical form assumed for the threshold function. On the contrary, it provides an
efficient method for detecting small deviations from the assumed theoretical form.
But the efficiencey of FAST for that purpose, and for threshold estimation in gen-
eral, declines when the deviations of the theoretical model from reality exceed the
current threshold uncerainty. This limitation is illustrated by the results of Fig. 10
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(top panel) after large numbers of trials. We have also found that FAST can ef-
ficiently distinguish between models of different form: multiple FAST algorithms
can be run concurrently, each using a different candidate threshold function: for
each trial, a threshold function is randomly selected, and stimuli are chosen based
on that threshold function, while the data are used to update the parameters of all
functions. This procedure yields some confidence that no threshold function will
benefit from a bias due to adaptive testing.

8.2. Global or Local Stimulus Placement?

Theoretically and empirically, selecting the point in stimulus space that is glob-
ally most informative generally results in faster convergence to the true function
parameters than alternative methods. Indeed, so long as the psychometric func-
tion is monotonic, no disadvantages are incurred by choosing the optimal stimulus
parameters in the unidimensional threshold estimation case. However, for two-
dimensional estimation — particularly if the variation of response probability along
one dimension is not monotonic — the stimulus that is globally most informative
in theory may not be most informative in practice.

When employing global optimization for stimulus placement, there is no guar-
antee that the stimulus space will be sampled in an intuitively informative manner.
Once a particular form of the threshold function (and hence, the two-dimensional
probability surface) is assumed, there will often be particular locations in stimulus
space that are always most informative about the parameters of the assumed func-
tion as the experiment progresses. For example, if one assumes that an aftereffect
decays to zero, and attempts only to estimate the initial aftereffect strength and the
rate of decay, the points that would constrain these two parameters best are in the
initial period of rapid decay, and there is no need to sample stimuli when the afteref-
fect has decayed to the (assumed) limit of zero. In all such cases, stimulus selection
based on global entropy minimization will choose trials isolated to a few particular
regions of the stimulus space. This is optimal if one is correct about the form of
the threshold function. However, the assumed functional form may not be accurate,
for example, an aftereffect may not actually decay to zero, but may have a persis-
tent component (Vul et al., 2008). In this case, the stimulus parameters that seemed
to be most informative under incorrect assumptions about the underlying function,
will actually fail to inform about the deviation. Due to the possibility of these cases,
it is generally useful to sample the stimulus space more uniformly, so as to detect
systematic deviations from the assumed functional form. One may refuse on these
grounds to entrust the sampling of the stimulus x axis to an entropy minimization
algorithm, and instead select in advance the x values to sample, in the standard way.
Another alternative is to sample the x axis randomly.

Another alternative (discussed in the ‘Assumptions’ section) is to choose stimuli
based on multiple candidate threshold functions intermittently. If the goal of testing
is to explicitly distinguish different threshold models, one might wish not to just
optimize stimulus placement for the estimation of parameters in a specific model,
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but instead to optimize stimulus placement for selection among alternative models
and functional forms. This approach has been used to design experimental proto-
cols in advance of experimentation with some success (Myung and Pitt, 2009), but
not in online adaptive testing — this is a promising direction for future research.
Nevertheless, if adaptively testing with the goal of model selection, it would not
be possible to specify all possible alternative models, and the tradeoff between ef-
ficiency and robustness entailed in global vs local stimulus placement may still fall
on the side of robustness.

8.3. What Optimality Criterion to Use?

We have considered several criteria for ‘optimal’ stimulus placement. According to
information theory, the ideal is minimizing expected posterior entropy — when this
is optimized one chooses the theoretically most informative stimulus. However, the
goals of typical psychophysical experiments are not to minimize entropy over the
joint probability distribution over all parameters, but rather to minimize expected
variance (that is, decrease standard error and confidence intervals) of some or all
parameters, or else of the threshold itself. In the latter case there is no principled
way to combine variances across parameters at different scales. In future work it
may be useful to consider explicit costs of errors in different parameters. This way,
stimulus placement in an experiment primarily interested in the estimation of the
peak frequency of the contrast sensitivity function would optimize this goal, while
an experiment interested in the steepness of the sensitivity drop-off with increasing
spatial frequencies could best estimate that parameter. Although such explicit for-
mulations of the loss function may yield the most useful experiment, the efficiency
gained may not outweigh the added complexity.

8.4. Estimation of Non-parametric Functions

Although in many psychophysical experiments, there is much to be gained from
conducting functional adaptive testing with simple parametric functions, in some
cases the parametric function is unknown, or very complex. In these cases, one may
want to consider functions with many parameters, or even non-parametric estima-
tion procedures like locally weighted regression. These might provide a basis for
an alternative, multi-dimensional adaptive search technique requiring less strong
assumptions, but to our knowledge such approaches has not yet been explored for
adaptive testing.

9. Summary

We introduced and validated a method for efficient estimation of two-dimensional
psychophysical functions and a Matlab toolbox implementation of it: Functional
Adaptive Sequential Testing (see Appendix A). This toolbox (and corresponding
manual) may be downloaded here: http://code.google.com/p/fast-toolbox/

This tool substantially improves efficiency of psychophysical testing under cor-
rect (or approximately correct) assumptions about the parametric model of the
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function relating threshold (e.g., contrast) to some independent variable of interest
(e.g., spatial frequency). Specifically, so long as the model error is smaller than the
uncertainty inherent in the data, FAST will remain a more efficient alternative than
running multiple independent staircases. However, when sufficient data are gath-
ered such that they provide threshold estimates with precision exceeding the model
error, then FAST will lead to less efficient estimation, and independent staircases
should be used instead.
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Notes

1. The method of adjustment tends to be quite efficient, but is often disfavored in
practice because making a given setting takes a substantial amount of time, so
it is inapplicable to quickly decaying effects, and may be susceptible to ‘over-
thinking’ on the part of the participants.

2. We do not discuss here current developments in non-parametric adaptive testing
procedures, which improve upon classic staircase methods without invoking an
explicit psychometric function (Faes et al., 2007).

3. Each point is not equally informative, and thus the testing procedure should be
adaptive, to choose the most informative points.

4. To see this, recall that the mean squared value is the variance plus the squared
mean, for any distribution; if the mode is adopted as an estimate of a random
variable, the distribution of error in the estimate is the distribution of devia-
tions from the mode, and the mean squared error is increased by the squared
difference between mean and mode.
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Appendix A: Functional Adaptive Sequential Testing (FAST) Matlab Toolbox

Our implementation of FAST as a Maltab toolbox can be downloaded from the
Google Code repository: http://code.google.com/p/fast-toolbox/
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AR O

The implementation includes functions for:
Initializing a FAST structure (fastFull and fastStart).
Updating the structure with new data (fastUpdate).
Dynamic resampling — implementing the roving range (fastResample).
Obtaining estimates and confidence intervals on parameters (fastEstimate).
Plotting the current data and function fits (fastPlot).

Selecting the next stimulus (fastChooseY).

Details on the use of these functions may be found in the associated help files.

1.

The FAST toolbox contains several common threshold functions:

A single value — (funcVal), a function that does not vary with x — used for
simple, unidimensional, threshold estimation: y. = ®j.

Linear — (funcLine), a simple linear change: y. = ®; + ®sx; or re-
parameterized in (funcMscale) to have more intuitive parameters as Magnifi-
cation scaling with eccentricity: yo = ®1(1 + ©®2x).

. Hyperbolic/Simplified exponential decay — as often used to describe delay

discounting, or simple decay of aftereffects (funcHyperbolic: y. = 1/(14 ®1x)
and funcExpS: y. = exp(—01x)).

Exponential decay — (funcExp) as commonly used to describe time-courses of
aftereffects and adaptation with more variable parameters:

Ye=01+ (O — 91)(1 - eXP<—®i3>>'

Polynomial — (funcPolynomial), a polynomial of any degree (determined by
the number of parameters provided):

Ve = Z @,'xifl.
i

. CSF — the contrast threshold function as described by Pelli er al. (1986),

which is simply a log-parabola relating log(threshold contrast) to log(spatial
frequency) (funcCSF — more complex parameterizations are included as op-
tions):

Ye =01 + 10 (log;p(x) — ©2)%.
Threshold vs Contrast — including both a simple, linear, threshold vs contrast

function (funcTVC):

G)zi, for x > Oy,
Ye = ©1
®), for x < ©;
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and a non-linear version (funcTVCnl):

x \ 93
@2(—) , forx > 0©y,
Ye = O

O, for x < ©.

There is also a set of psychometric functions built into FAST; each of these is the
full ogival cumulative density function (0—1) parameterized by a scale parameter S.
These full ogival functions are then scaled depending on task parameters (number
of alternatives, and lapse parameters) by the FAST function fastPsyScale:

1. Gumbel: pr(y) =1 —exp(—exp(S(y — yc))-
2. Normal: pi(y) = 5 + 3(erf (v = yo)/(V/25))).
3. Half-Normal: p;(y) =erf(()%/v/2), y > 0.
Logistic: pr(y) = (14 exp(—22 )1
Weibull: pr(y) = 1 — exp(=(£)%), y > 0.

b

b

The Weibull function differs from the others listed in that the critical value:
v scales the stimulus magnitude instead of subtracting from it. But it is equiva-
lent to case 1, the Gumbel function, if y and y. are replaced by their logarithms
there.

A more thorough description of the virtues and uses of each of these different
functions may be found in the manual, or in the help for the individual files in the
FAST toolbox.

Appendix B: Minimizing Expected Posterior Entropy

While others have described the calculations necessary to compute the points that
minimizes expected posterior entropy (Kontsevich and Tyler, 1999), for the sake
of completeness, we will provide the description here as well: First, we define the
probability of obtaining a particular response (r as O or 1) to a particular stimulus
(x, y), by integrating over all possible parameter values (®, S):

Pr=1lx.y)=) Pr=1x.y.0,5P(®,9),
0,8
(B.1)

P(r=0lx,y)=)_ P(r=0lx,y,0,5P(®,S).
0,5

Using these probabilities as normalizing constants, we can compute the posterior
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probability over parameters given a particular response:
Pir=1|x,y,0,5P(0,S)

Pi=PO®,Slr=1,x,y)=

P(r=1]x,y)
(B.2)
P(r=0lx,y,®,$)P(®,S5)

For each of these posterior probability distributions we can define the entropy
over parameters as:

H(P)=-YPlog, P, (B.3)
0,8

and we can compute the expected entropy:
E[H(P)]=H(P)P(r=1lx,y)+ H(Po)P(r =0lx, y). (B.4)
The goal of global entropy minimization is the solution to:
arg ffclinl{E[H(P)]}, (B.5)

and solving for the local solution amounts to solving this with x fixed (to c¢):
argmin{E[H (P)]|x = c}. (B.6)
y

Appendix C: Minimizing Expected Average Posterior Predictive Variance

Here we introduce an optimality criterion that provides a principled, and general,
method for trading off efficiency of estimating different parameters. The goal of
minimizing posterior variance is to choose a stimulus (xp, yp) that is expected to
alter the posterior distribution in such a way that it decreases the variance of the pre-
dicted critical values (y*) for a number of relevant x values (x®'¥). In other words,
this optimality criterion aims to increase the confidence of our predictions about the
threshold (y* value) for a number of points along the threshold function (specified
by x®¥). In contrast to entropy minimization, the minimization of posterior predic-
tive variance is supported by a rational cost function, that associates errors with a
cost proportional to the square of their magnitudes, whereas entropy minimization
is tantamount to minimizing error frequency in parameter space without regard to
the magnitude of the error either in parameter space, or its consequences for our
predictions (Twer and MacLeod, 2001).

The calculation starts just as in Appendix B: First, we define the probability of
obtaining a particular response (r as 0 or 1) to a particular stimulus (xp, yp), by
integrating over all possible parameter values (®, §):

P(r=1lxp,yp) =Y P(r=1xp,%,0,5P(@®,S),
0,S

P(r=0lxp, yp) = »_ P(r =0lxp, yp, ©, S) P(O, S).
0,S

(C.1)
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Using these probabilities as normalizing constants, we can compute the posterior
probability over parameters given a particular response:

P(r=1|xp, yp, ©, S)P(®, S)

P®,S|r=1,xp,yp) =

’

P(r=1|xp,
( | p Yp) (C2)
P(r=0|xp7 )’p» ®7S)P(®9 S)
P(©,S|r=0,xp, yp) = Py — .
(r = 0lxp, yp)

Using these (possible) posterior probability distributions, we then compute the
variance of the predicted critical values (y*) over k potential x*¥ values (x"""‘ll to
x,ival). These x¢*? values correspond to the relevant x values that it is our goal to
learn about.

Recalling that y* = F(x, ®), the mean and variance for y* for each xval and
each response r, can be written as follows:
B[ Ir=1]= Z F(x @) PO, S|r =1, xp, yp),
B[] |r = ZF(xeval ®)P (O, SIr =0, xp, ¥p),
. (C.3)
E[crly Ir= ZF(x ol @)’ Py(®, ) -l |r =17,
E[o} |r = ZF(x oal @)’ Py(®, §) —E[u) |r =072,
From these expected posterior predictive variances for each x®¥ conditioned

on a response, we compute the expected average posterior predictive variances by
averaging over x®* and integrating out the two possible responses, weighted by

their prior probability:

—_—

k
—Z y Ir =1]P(r = 1|xp, yp)
i=1

k
—Z [0 |r = 0] P(r = Olxp, yyp). (C.4)

P\T‘

»'—a

The goal of global predictive variance minimization is the solution to:

arg min{E[ay*]} (C.5)
p>Yp

and solving for the local solution amounts to solving this with x fixed (to ¢):
argmin{E[c”" ]|xp = c}. (C.6)
Yp

Finally, if some x®* values are more important than others — for instance, if we
aim to estimate the contrast sensitivity function to assess reading function, where
specific spatial frequencies may be expected to play a greater role, the variances
associated with different x®'¥ values can be differentially weighted to reflect this.



